КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основні властивості плану швидкостей та прискорень
1) Усі точки механізму, швидкості (прискорення) яких дорівнюють нулю, на плані швидкостей (прискорень) знаходяться в полюсі. 2) Усі вектори, що виходять з полюса плану швидкостей (прискорень), є векторами абсолютних швидкостей (прискорень). 3) Усі вектори плану, що з’єднують кінці векторів абсолютних швидкостей (прискорень), є векторами відносних швидкостей (прискорень). Замірявши відповідні відрізки (в мм) на плані швидкостей (прискорень) та помноживши їх на масштаб , знаходимо дійсні (за модулем) значення швидкостей (прискорень). 4) Для плану швидкостей та прискорень дійсна теорема подібності. Приклад 2. На рис. 2.11, а показана кінематична схема механізму поперечно-стругального верстата. В його склад входять початкова ланка 1 та дві групи Ассура ІІ класу: група, що складається з ланок 2 та 3 третього виду, та група ІІ(4,5) п’ятого виду. Необхідно побудувати плани швидкостей і прискорень для положення визначеного кутом . Кутова швидкість кривошипа = const. Знаходимо швидкість т. В, яка належить ланці 1, м/с. Від полюса плану швидкостей відкладаємо відрізок , який зображує вектор швидкості vB (Рис. 2.11, б). При цьому масштаб плану швидкостей дорівнює Рис. 2.11 Переходимо до визначення швидкостей точок ланок першої структурної групи. Відомі швидкості точок В і С, які належать зовнішнім кінематичним парам групи: швидкість т., яка належить ланці 2 (повзуну), дорівнює швидкості т. В кривошипа (першої ланки), тобто . Невідома швидкість точки, яка належить ланці 3, кулісi і в даному положенні механізму, співпадає з т. В, що лежить на кривошипі (повзуні). Для її визначення записуємо систему векторних рівнянь За першим рівнянням з точки b, кінця вектора (швидкості т. В) проводимо пряму, паралельну до ланки CD (є швидкість відносного поступального руху повзуна 2 по напрямній 3; напрямлена вздовж неї). За другим рівнянням з точки с, яка співпадає з полюсом pV, (vc = 0), проводимо пряму, перпендикулярну до ВС. На перетині цих прямих одержуємо точку b3. Вектор зображує швидкість точки , що належить кулісі. Використовуючи теорему подібності, знаходимо положення точки D на плані швидкостей Відкладаємо відрізок сd на продовженні відрізка cb3 , знаходимо точку d. Швидкість т. D5, яка належить ланці 5, визначаємо з рівняння Усі точки ланки 5 рухаються вздовж напрямної EF, тобто абсолютна швидкість т. D5 паралельна напрямній, Таким чином, з полюса pv проводимо пряму, паралельну до EF, а з т. d – пряму, паралельну до КМ. На перетині одержуємо т. d5. Сполучаємо її з полюсом pV. Положення т. S3 знаходимо за теоремою подібності з пропорції . Вимірявши відповідні відрізки в мм, множимо їх на масштаб і одержуємо величини шуканих швидкостей . Кутову швидкість ланки 3 визначимо за формулою . Напрямок цієї швидкості знаходимо за допомогою вектора швидкості . Умовно переносимо цей вектор у т. D механізму та спостерігаємо за умовним обертанням ланки 3 відносно точки С проти руху стрілки годинника. Таким чином, напрямлена у той же бік. Побудова плану прискорень. Прискорення т. В, яка належить ланці 1 кривошипу, визначається за формулою Від полюса pa (рис. 2.11, г) відкладаємо відрізок pab паралельно до ланки АВ (у напрямку від т. В до т. А), який зображує прискорення (). Масштаб плану прискорень при цьому . Визначаємо прискорення т., що належить ланці 3, У першому рівнянні , - коріолісове прискорення, яке з’явилось у результаті складання відносного поступального руху повзуна 2 по напрямній 3 зі швидкістю та переносного обертального руху цієї напрямної зі швидкістю . Модуль цього прискорення визначається за формулою . Щоб знайти напрямок вектора , необхідно повернути вектор відносної швидкості на кут 900 в напрямку переносної кутової швидкості (рис. 2.11, в). Прискорення є прискоренням відносного поступального руху повзуна 2 по напрямній 3 і напрямлене вздовж ланки CD. Величина (модуль) його невідома. Нормальне прискорення визначається за формулою , воно напрямлене від точки В до точки С паралельно до ланки СВ. Дотичне прискорення напрямлене перпендикулярно до ланки ВС. Визначаємо відрізки bk i pan3, які зображують прискорення на плані . Відкладаємо від точки b плану прискорень відрізок bk, а від полюса pa відрізок pan3. З точки k проводимо лінію, паралельну до ВС, а з точки n3 - лінію, перпендикулярну ВС до їх перетину між собою. Точку перетину b3 з’єднуємо з полюсом і одержуємо відрізок pab3, який зображує прискорення точки . Для визначення положення точки D на плані прискорень складаємо рівняння, використовуючи теорему подібності, звідки . Щоб знайти прискорення точки , яка належить ланці 5, записуємо векторне рівняння , . Прискорення напрямлене вздовж напрямної EF, а відносне (релятивне) прискорення - вздовж КМ. З полюса рa проводимо лінію, паралельну до EF, а з точки d – лінію, паралельну до КМ. На перетині цих ліній одержуємо точку . Величини знайдених прискорень дорівнюють ; . Модуль кутового прискорення ланки 3 знайдемо за формулою . Напрямок знаходимо з допомогою дотичного прискорення . Переносимо вектор , що зображає .на плані, у точку В механізму і бачимо, що він вказує на умовне обертання ланки 3 навколо точки С проти руху стрілки годинника.
Дата добавления: 2014-01-04; Просмотров: 1544; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |