Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

План лекции. Форма проведения лекции:лекция-конференция

Клеточная селекция

Лекция 20

Форма проведения лекции: лекция-конференция

1. Методы клеточной селекции

2. Генетические основы применения культуры клеток растений в селекционных целях

1 Одно из направлений клеточных технологий — это использование их в селекции, которое облегчает и ускоряет традиционный селекционный процесс в создании новых форм и сортов растений. Существующие методы культивирования изолированных клеток и тканей in vitro условно можно разделить на две группы.

Первая группа — это вспомогательные технологии, которые не подменяют обычную селекцию, а служат ей. К ним можно отнести: оплодотворение in vitro (преодоление прогамной несовместимости), культивирование семяпочек и незрелых гибридных зародышей (преодоление постгамной несовместимости), получение гаплоидов путем культивирования пыльников и микроспор, криосохранение изолированных клеток, тканей и органов, клональное микроразмножение отдаленных гибридов.

Вторая группа методов ведет к самостоятельному, независимому от традиционных методов селекции, получению новых форм и сортов растений: клеточная селекция с использованием каллусной ткани, соматическая гибридизация (слияние изолированных протопластов и получение неполовых гибридов), применение методов генной инженерии.

В отдаленной гибридизации находят применение такие методы культуры изолированных тканей, как оплодотворение in vitro, эмбриокультура (выращивание изолированных зародышей на искусственных питательных средах), клональное микроразмножение ценных гибридов, а также получение гаплоидов in vitro и криосохранение.

Оплодотворение in vitro (преодоление прогамной несовместимости) проводится в том случае, когда невозможно осуществить оплодотворение между выбранными парами в естественных условиях. Это вызвано несколькими причинами: 1) физиологические (несоответствие во времени созревания пыльцы и т. д.); 2) морфологические (короткая пыльцевая трубка или блокирование роста ее на раз­ных этапах развития и т. д.).

Оплодотворение in vitro можно осуществить двумя способами: а) культивирование на искусственной агаризованной питательной среде завязи с нанесенной на нее готовой пыльцой; б) завязь вскрывается и на питатель­ную среду переносятся кусочки плаценты с семяпочками, вблизи которых или непосредственно на ткани плаценты культивируется готовая пыльца. Визуально определить, прошло оплодотворение in vitro или нет, можно по быстро увеличивающимся в размерах семяпочкам. Сформировавшийся зародыш, как правило, не переходит в состояние покоя, а сразу прорастает и дает начало гибридному поколению. Плацентарное оплодотворение in vitro позволило преодолеть несовместимость в скре­щивании сортов культурного табака N. tabacum с дикими видами N. rosulata и N. debneyi и сделало возможным получение межвидовых гибридов табака в опытах М.Ф. Терновского и др. (1976), Шинкаревой (1986).

Постгамная несовместимость при отдаленной гибридизации возникает после оплодотворения. Часто при этом образуются щуплые невсхожие семена. Причиной может быть расхождение во времени развития зародыша и эндосперма. Из-за слабого развития эндосперма зародыш бывает неспособен к нормальному прорастанию. В таких случаях из зрелой щуплой зерновки изолируют зародыш и выращивают его в питательной среде.

Выращивание зародышей в искусственной питательной среде называется эмбриокультурой. Среда для выращивания зрелого зародыша может быть простой, без добавок физиологически активных веществ (например, среда Уайта) или любая другая, содержащая минеральные соли и сахарозу. При более отдаленных скрещиваниях нарушения в развитии зародыша могут наблюдаться уже на ранних этапах, что выражается в отсутствии дифференцировки, замедленном росте. В этом случае культура зародыша состоит из двух этапов — эмбрионального роста зародыша, во время которого продолжается его дифференцировка, и прорастания подросшего зародыша. Для первого этапа требуется более сложная по составу среда с повышенным содержанием сахарозы, с добавками различных аминокислот, витаминов и гормонов.

Применение эмбриокультуры в селекции приобретает в последнее время большое значение для получения отдаленных гибридов зерновых, злаковых и других сельскохозяйственных культур. Показана возможность увеличения выхода пшенично-ржаных гибридов путем доращивания незрелых зародышей, а также использования эмбриокультуры для преодоления постгамной несовместимости при гибридизации пшеницы с колосняком.

Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitro абортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.

Исследована гормональная регуляция роста и развития зародышей томата in vitro. Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.

Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции.

2 Клетки в культуре in vitro отличаются по морфологии, по биохимическим свойствам, по физиологическому состоянию и генетически. Разнообразие (вариабельность) среди клеточных линий или растений-регенерантов называют сомаклональной вариабельностью. Генетическая природа и механизм возникновения сомаклональной изменчивости пока мало изучены. Однако четко можно выделить зависимость возникновения сомаклональных вариан­тов, прежде всего, от генетической гетерогенности соматических клеток исходного экспланта, генетической и эпигенетической изменчивости, индуцируемой условиями культивирования in vitro, а также от генотипа и исходного экспланта.

Полиморфизм культивируемых клеток можно объяснить видовыми и возрастными особенностями, уровнем плоидности, влиянием состава пи­тательной среды и условий культивирования, отсутствием коррелятивных связей. Последний фактор, ведущий к нарушению жесткой регуляции, су­ществовавшей в целом растении, видимо, является основной причиной спонтанной изменчивости клеток in vitro.

Любой фрагмент растения представляет собой мозаику различных тка­ней, и в зависимости от того, какая ткань даст начало каллусу, возникшие даже из одинаковых эксплантов каллусы будут гетерогенными и отличающимися друг от друга. Одинаковых, в полном смысле, эксплантов в при­роде быть не может, следовательно, неоднородность исходного материа­ла (видовая, возрастная, физиологическая) предопределяет разнокачественность клеток в культуре.

Физиологическая гетерогенность состоит в том. что клетки в популя­ии находятся в разном физиологическом состоянии, т. е. делятся, растут, стареют, погибают. Такая культура называется асинхронной. Заставить популяцию клеток высших растений проходить фазы клеточного цикла одновременно, т. е. синхронизировать их. почти невозможно. Потому что та часть клеток, которая способна в данный момент к делению, составляет 2—4%. Неблагоприятные условия (низкая температура, исключение важных компонентов питания), задерживающие деление, в какой-то степени способствуют накоплению числа клеток, готовых к делению. Более эффективны некоторые химические вещества, блокирующие определенные стадии подготовки к делению. В лучших случаях синхронизация может быть достигнута у 10—30% клеток, но при последующих делениях популяция опять быстро утрачивает синхронность.

Следует подчеркнуть, что физиологическая вариабельность клеток в суспензионной культуре меньше по сравнению с культурой каллусной ткани на агаре, что связано с более однородными условиями питания, аэрации и удаления токсических метаболитов из клеточного окружения в жидкой перемешиваемой среде. Гетерогенность культивируемых клеток обусловлена генетической, эпигенетической и модификационной изменчивостью.

Генетические, или мутационные, изменения приводят к изменению генотипа, которое может быть унаследовано. Мутации (изменения количества или структуры ДНК) происходят на генном, хромосомном и геномном уровнях. Генная, или точечная, мутация означает изменение структуры ДНК в одном локусе. Генные мутации приводят к сильным или слабым измене­ниям морфо-

логических, биохимических и физиологических свойств клетки. Мутации, возникающие в результате изменения макроструктуры хромосом, называются хромосомными мутациями, или хромосомными аберрациями (перестройками). Структурные перестройки хромосом возникают в результате инверсии, делеции, дупликации, транслокации и транспозиции. Геномные мутации связаны с изменением числа хромосом в ядре, т. е. с изменениями в кариотипе.

Все виды названных генетических изменений имеют место у клеток in vitro Наиболее подробно исследована хромосомная изменчивость клеток in vitro. Даже клетки одной и той же ткани, выращиваемые в одном сосу­де, могут значительно различаться между собой по хромосомным набо­рам (диплоидные, полиплоидные, анеуплоидные). Причины генетической изменчивости многообразны: 1) нарушение коррелятивных связей при выделении первичного экспланта из растения, т. е. отсутствие организменного контроля; 2) действие компонентов среды; 3) влияние продуктов метаболизма, накапливающихся в среде; 4) гетерогенность исходного материала и селекция клеток определенного типа.

Хромосомная изменчивость является результатом нарушений митоза, называемых эндомитозом и эндоредупликацией. При эндомитозе проис­ходит спирализация хромосом и начинается митоз, но нарушается вере­тено деления, сохраняется оболочка ядра, хромосомы не расходятся и деспирализуются внутри ядерной оболочки. Это приводит к возрастанию числа хромосом, увеличению размеров ядра и клеток. Эндоредупликация не сопровождается образованием хромосом и делением ядра, хотя со­держание ДНК в ядре тоже увеличивается. К образованию полиплоидных и анеуплоидных клеток также приводят нарушения в митозе, связанные с неправильным распределением хромосом.

Клетки различного уровня плоидности различаются по скорости деления и роста, по устойчивости к неблагоприятным воздействиям, начинают конкурировать, и одни из них начинают преобладать. Такой процесс воз­растающего доминирования в популяции клеток определенного типа называется клеточной селекцией. Доминирование может быть вызвано преимущественной пролиферацией одних клеток или успешной элиминацией (удалением) других. Такую селекцию правильнее называть автоселекцией, потому что она протекает спонтанно, без специального воздействия какими-либо стрессовыми факторами. В процессе автоселекции формируется наиболее приспособленный к данным условиям кариотип. Вероятно, клетки приспосабливаются к новым условиям существования путем отбора более жизнеспособных полиплоидных клеток. Интересно, что изменение условий выращивания меняет направление отбора. Показано, например, что высокие концентрации 2,4-Д и кинетина увеличивают возможность полиплоидизации.

То, что условия выращивания играют важную роль в формировании цитогенетической гетерогенности, хорошо видно из опытов с тканью гаплопаппуса. В лаборатории Р.Г. Бутенко в течение двух лет культивирова­лись меристематические клетки этого растения, пассажи проводились раз в месяц. В итоге исход-ные диплоидные клетки на 95% приобрели другие уровни плоидности. Шведский исследователь Т. Эриксон, работая с этой же тканью, пересаживал ее на свежую питательную среду через каждые 2 дня. При этом штамм сохранил ста-

бильную диплоидную характеристику. Однако способ выращивания не может полностью гарантировать генетическую стабильность в популяции клеток, так как генетической гетерогенностью может обладать сам исходный материал. У многих растений диф­ференцированные ткани имеют клетки разной плоидности. Специализи­рованные клетки, например клетки зеленой ассимилирующей паренхимы листа, запасающих тканей мясистых корней, клубней, зачастую являются полиплоидными.

Спонтанное или индуцированное каким-либо фактором образование различных вариантных форм растений можно использовать для улучшения уже существующих сортов сельскохозяйственных культур.

Как было отмечено, клетки in vitro становятся разнокачественными также благодаря эпигенетическим изменениям, т е. изменениям в программе считки генов или потенции к их активации. Эти изменения генной активности являются наследуемыми.

К ненаследуемым изменениям у клеток в культуре относятся модификационные изменения, которые в большинстве носят адаптивный, приспособительный характер. Эти изменения не затрагивают генетических структур клетки, они соответствуют физиологической адаптации, при которой границы изменений не превышают норму реакции, обусловленной генотипом.

Гетерогенность клеток in vitro возрастает с увеличением продолжи­тельности их культивирования. Различные типы морфогенеза — соматический эмбриогенез или органогенез—также могут по-разному сказываться на генетических изменениях и, соответственно, на фенотипе растений. Экспериментально установлено, что при соматическом эмбриогенезе время прохождения цикла клетка — растение значительно короче, чем при органогенезе, поэтому степень сходства получаемого материала и исходного родительского генотипа может быть значительно выше.

Сомаклональные варианты имеют, несомненно, практическое применение в сельскохозяйственной практике, в силу появления форм, отличающихся от родительских по различным биохимическим, качественным и количественным признакам, а также цитогенетическим характеристикам. Например, получены сомаклоны картофеля сорта Зарево, отличающиеся высокой урожайностью, повышенной устойчивостью к заболеваниям, более высоким содержанием в клубнях протеина и крахмала. Причем наследование важных признаков при размножении клубнями сохранялось в течение трех лет полевых испытаний (В.В. Сидоров и др., 1984, 1985). Для растений табака получе­ны через каллусную культуру сомаклоны, устойчивые к вирусу табачной мозаики. В настоящее время метод культуры тканей начал широко использоваться в селекции не только кормовых и технических культур, но и декоративных и лекарственных растений. Примером тому может служить новый сорт пеларгонии Velvet Rose, полученный через каллусную культуру.

Таким образом, полученные положительные результаты сви­детельствуют о необходимости более эффективного внедрения различных приемов получения сомаклональных вариантов в практику селекционной работы, и наиболее реальным является применение сомаклональной изменчивости для улучшения или «доработки» уже существующих сортов или линий по отдельным недостающим признакам.

Несмотря на то, что существует генетическая нестабильность культур изолированных тканей и клеток растений, она не может обеспечить потребности селекционеров в генетическом разнообразии. В связи с этим для ускорения селекционного процесса в культуре клеток используются химические и физические мутагены. Обработка ткани раувольфии змеиной азотистым ипритом в концентрации 2,5 * 10-3 М привела к повышению уровня аберраций хромосом в первом пассаже до 32%, вызвала сдвиг популяции в сторону увеличения триплоидов. В результате удалось получить штамм с более высокой биосинтетической активностью по сравнению с исходной тканью.

Спонтанный и индуцированный мутагенез в культуре клеток, тканей и протопластов позволяет получать растения, представляющие практический интерес для селекционеров. Важное практическое значение имеет создание форм растений, устойчивых к неблагоприятному действию факторов внешней среды, таких как низкие температуры, засоление почв, загрязнение природной среды токсическими веществами, поражение вредителями и возбудителями болезней. Эти факторы могут быть использованы в качестве селективного фона в процессе клеточной селекции. Клетки, сохранившие при этом жизнеспособность, могут быть регенерированы в целые растения.

Принципиальной разницы в результатах клеточной селекции при спонтанном и индуцированном мутагенезе нет. Для повышения частоты мутаций в соматических клетках обычно используют такие мутагены, как нитрозогуанидин, нитрозометилмочевина, метилметансульфонат. Реже применяют облучение ультрафиолетом, γ-квантами 60Со и нейтронами.

В качестве селективных агентов используют антибиотики, ингибиторы синтеза нуклеиновых кислот, аналоги пуриновых и пиримидиновых оснований, фито- и патотоксины, агенты, вызывающие солевой и водный стресс, аналоги аминокислот и т.д.

Для проведения клеточной селекции используют следующие приемы:

— прямая (позитивная) селекция, при которой выживает лишь определенный искомый мутантный тип клеток;

— непрямая (негативная) селекция, основанная на избирательной гибели делящихся клеток дикого типа и выживания метаболически неактивных клеток, но требующая дополнительной идентификации у них мутационных изменений;

— тотальная селекция, при которой индивидуально тестируются все клеточные клоны;

— визуальная селекция и неселективный отбор, когда ва­риантная линия может быть идентифицирована среди всей популяции клеток визуально или при использовании биохимических методов (тонкослойная или жидкостная хроматография, радиоиммунный анализ, микроспектрофотометрия и др.). Из перечисленных выше приемов клеточной селекции прямая селекция является наиболее распространенным методом и используется главным образом для выделения растений-регенерантов, устойчивых, например, к гербицидам, антибиотикам, токсинам, тяжелым металлам, солям и другим антиметаболитам.

<== предыдущая лекция | следующая лекция ==>
План лекции. Форма проведения лекции:лекция-конференция. Гаплоидная технология | План лекции. Форма проведения лекции:лекция-конференция
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.