Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

План лекции. Форма проведения лекции:лекция-конференция

Клеточная селекция

Лекция 21

Форма проведения лекции: лекция-конференция

1 Виды культур растительных клеток, используемые в клеточной селекции

2 Преимущества метода клеточной селекции in vitro

1 Для проведения работ по клеточной селекции растений в условиях in vitro в качестве объекта исследования могут быть использованы каллусные, суспензионные культуры или изолированные протопласты. Выбор объекта зависит от наличия разработанных технологий применительно к различным видам растений, а также от конечных целей исследования.

Каллусная ткань представляет собой легко доступный материал, который наиболее часто используют для клеточной селекции. Как правило, работу проводят на первичной или переса­дочной каллусной ткани, которая не утрачивает способности к регенерации на протяжении ряда субкультивирований. Однако при работе с каллусными культурами многие исследователи отмечают существенные недостатки данного объекта: медленный рост ткани, неравноценное для всех клеток действие токси­ческих веществ, которые применяются в качестве селективного фактора, а также потеря регенерационной способности в процессе культивирования каллусных клеток. Несомненно, проводить селекцию целесообразно на уровне одиночных клеток (суспензионная культура, протопласты). Однако для многих видов растений не разработаны эффективные технологии и способы культивирования одиночных клеток. Поэтому, несмотря на пе­речисленные выше недостатки использования каллусных культур, этот способ селекции остается для некоторых видов растений пока единственным.

Получение стабильно устойчивых линий — процесс длительный. Как правило, селекция начинается с получения достаточного количества каллусной массы из изолированных растительных эксплантов, использующейся в дальнейшем для определения концентрации селективного фактора (построение дозовой кривой), при которой наблюдается одновременно рост каллусной ткани, и в то же время часть каллусных колоний погибает. Выбранная концентрация селективного фактора признается оптимальной и используется в дальнейших экспериментах. Так как первично полученные на средах с селективными факторами колонии клеток могли возникнуть вследствие физиологической адаптации или определенного состояния дифференцировки клеток и не быть генетически устойчивыми, то в течение последующих 4—6 субкультивирований на селективной среде проверяет­ся стабильность устойчивости полученных клонов. Затем их переносят на среду без селективного фактора и субкультивируют еще 2—3 пассажа. И только после повторного возвращения в селективные условия отбирают стабильные клоны, из которых пытаются получить растения-регенеранты. Однако работы, проведенные с получением растений, устойчивых к повышенным солям, а также к токсинам, выделенным из грибов—возбудителей болезней, показали, что устойчивость клетки и растения к исследуемому селективному фактору может совпадать и не совпадать. Прямая корреляция между устойчивостью растений и клеток in vitro отмечена лишь для низких температур, устойчивостью к гербицидам, высоким концентрациям алюминия и другим факторам. Большое число работ по культивированию каллуса, с целью получения нового селекционного материала, проведено на пшенице, ячмене, рисе, сорго, а также на картофеле, томатах, люцерне и, крайне редко, на древесных. Уже достигнуты первые положительные результаты по получению растений пшеницы, риса, картофеля, устойчивых к NaCl или Na2S04. Получены клетки, а из них растения моркови, которые синтезируют в 20 раз больше метионина, в 30 раз - триптофана, в 5 раз — лизина путем добавления в питательную среду токсичных аналогов аминокислот. Для картофеля получены растения, устойчивые к кольцевой гнили. Что касается древесных, то для них работы в этом направлении крайне редки и часто имеют поисковый характер. Таким образом, использование каллусной культуры в селекционных целях открывает огромные возможности в создании новых форм растений, несущих ценные признаки, необходимые для человечества. Наряду с перечисленными выше объектами (каллусная, суспензионная культура, изолированные протопласты), в качестве исходного материала для селекции могут быть использованы культуры соматических или андрогенных эмбриоидов, такие органогенные экспланты, как сегменты листьев или различные меристематические и стеблевые части растений, а также культура изолированных зародышей. Например, путем культивиро­вания и селекции in vitro зародышей из семян получены растения ячменя, устойчивые к аналогам аминокислот, с улучшенным содержанием белка. Для картофеля разработан эффективный метод обработки побегов и черенков мутагеном, приводивший к получению химерных мутантов хлорофиллдефектности и антибиотикоустойчивости. При культивировании пыльников яровой пшеницы сорта Саратовская-29 и Московская-35 на питательных средах с повышенным содержанием солей хлорида натрия получены соматические эмбриоиды, а в дальнейшем растения-регенеранты, проявившие повышенную солеустойчивость (Беккужина, 1993).

Таким образом, проведение селекции на клеточном уровне позволяет создавать новые формы растений в 2—4 раза быстрее по сравнению с традиционными способами селекции.

2 По сравнению с экспериментальным мутагенезом на уровне целых растений метод мутагенеза на уровне клеток имеет ряд преимуществ:

- экономится площадь, так как в одной чашке Петри диаметром 10 см можно культивировать 107 – 108 клеток, а для такого же количества растений необходима площадь свыше тысячи гектаров;

- мутантные признаки на уровне отдельных клеток проявляются довольно быстро;

- возможно получение новых типов мутаций, в том числе и биохимического характера;

- экономится время и трудозатраты на получение нового желаемого признака. Важным условием является также возможность получения гаплоидов у того или иного вида растений. В дальнейшую селекционную работу включаются только те генотипы, у которых мутации проявляются на уровне целого растения. Растения с измененными признаками, полученные в результате мутагенеза на клеточном уровне, называются вариантами (термин «мутант» используется тогда, когда мутация подтверждается генетическими или молекулярно-генетическими методами). Рекомендуются следующие обозначения: R0 – растения-регенеранты, полученные из соответствующих клеточных клонов, R, R2 и т.д. – первое и последующее поколения после самоопыления. Общая схема получения мутантных форм путем селекции на клеточном уровне состоит из нескольких этапов (рис. 17):

Измененные при мутагенной обработке клетки могут быть выделены в условиях культивирования in vitro путем прямого и непрямого отборов, а также при тестировании отдельных клеточных колоний. Прямой отбор состоит в добавлении к питательным средам отдельных компонентов, к которым обычные, неизмененные клетки не устойчивы. Непрямой отбор (негативная селекция) заключается в создании условий культивирования, при которых рост неизмененных клеток либо задерживается, либо эти клетки погибают (например, культивирование при низких или высоких температурах на средах с недостатком отдельных компонентов и т.д.). Существует ряд факторов, ограничивающих селекцию in vitro Многие хозяйственно важные признаки, такие, как урожайность, количество зерна, устойчивость к пестицидам и другие трудно или практически невозможно получить при культивировании in vitro поскольку они не проявляются на клеточном уровне.

 

 

Рис. 17. Схема получения мутантных форм путем клеточной селекции

 

Недостаточно также биохимических и молекулярных маркеров, которые коррелировали бы с этими признаками на уровне целых растений. Не все селектируемые признаки, проявляющиеся на уровне клеток, сохраняются на уровне растений - регенерантов. Тому несколько причин: некоторая часть изменений не затрагивает генетический аппарат клетки, поэтому не сохраняется у потомков; генетические изменения могут элиминироваться в про цессе дифференциации и мейоза; функция мутированного гена может быть ограничена состоянием дифференцируемых и культивируемых клеток; мутация одного гена может сопровождаться активацией различных генов, кодирующих изоферменты; часть генотипов неспособна регенерировать нормальные фертильные растения.

<== предыдущая лекция | следующая лекция ==>
План лекции. Форма проведения лекции:лекция-конференция | План лекции. Получение трансгенных растений
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 491; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.