Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрическая интерпретация ОЗЛП

 

Пусть необходимо найти оптимальный план производства двух видов продукции (x 1 и x 2 ), т.е. такой план, при котором целевая функция (общая прибыль) была бы максимальной, а имеющиеся ресурсы использовались бы наилучшим образом. Условия задачи приведены в табл. 3.1.

 

Таблица 3.1 – Данные о запасе и нормах расхода ресурсов

Вид продукции Норма расхода ресурса на единицу продукции Прибыль на единицу изделия
  А В С  
    0,1 3,5  
    0,5    
Объем ресурса        

Оптимизационная модель задачи запишется следующим образом:

а) целевая функция:

б) ограничения:

(ограничение по ресурсу А),

(ограничение по ресурсу B),

(ограничение по ресурсу C);

в) условие неотрицательности переменных:

Данную и подобные оптимизационные модели можно продемонстрировать графически (рис. 3.3).

Преобразуем нашу систему ограничений, найдя в каждом из уравнений x 2 , и отложим их на графике. Любая точка на данном графике с координатами x 1 и x 2 представляет вариант искомого плана. Однако ограничение по ресурсу А сужает область допустимых решений. Ими могут быть все точки, ограниченные осями координат и прямой АА, так как не может быть израсходовано ресурса А больше, чем его на предприятии имеется. Если точки находятся на самой прямой, то ресурс используется полностью.

Аналогичные рассуждения можно привести и для ресурсов В и С. В результате условиям задачи будет удовлетворять любая точка, лежащая в пределах заштрихованного многоугольника. Данный многоугольник называется областью допустимых решений.

Рисунок 3.3.– Геометрическая интерпретация оптимизационной задачи линейного программирования

Однако нам необходимо найти такую точку, в которой достигался бы максимум целевой функции. Для этого построим произвольную прямую 4 x 1 + 5x 2 = 20, как x 2 = 4 - 4/ 5x 1 (число 20 произвольное). Обозначим эту линию РР. В каждой точке этой линии прибыль одинакова. Перемещая эту линию параллельно ее исходному положению, найдем точку, которая удалена от начала координат в наибольшей мере, однако не выходит за пределы области допустимых решений. Это точка М, которая лежит на вершине многоугольника. Координаты этой точки (x' 1 = 3,03 и x' 2 = 7,4) и будут искомым оптимальным планом.

<== предыдущая лекция | следующая лекция ==>
Оптимизационные задачи с линейной зависимостью между переменными | Симплексный метод решения ОЗЛП
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 373; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.