Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Симплексный метод решения ОЗЛП

Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции улучшается.

Базисным решением является одно из допустимых решений, находящихся в вершинах области допустимых значений. Проверяя на оптимальность вершину за вершиной, приходят к искомому оптимуму. На этом принципе основан симплекс -метод.

Симплекс это выпуклый многогранник в n -мерном пространстве с n + 1 вершинами, не лежащими в одной гиперплоскости (гиперплоскость делит пространство на два полупространства).

Например, линия бюджетных ограничений делит блага на доступные и недоступные.

Доказано, что если оптимальное решение существует, то оно обязательно будет найдено через конечное число итераций (шагов), кроме случаев зацикливания.

Алгоритм симплексного метода состоит из ряда этапов.

Первый этап. Строится исходная ОМ. Далее исходная матрица условий преобразуется в приведенную каноническую форму, которая среди всех других канонических форм выделяется тем, что:

а) правые части условий (свободные члены b i ) являются величинами неотрицательными;

б) сами условия являются равенствами;

в) матрица условий содержит полную единичную подматрицу.

Если свободные члены отрицательные, то обе части неравенства умножаются на - 1, а знак неравенства меняется на противоположный. Для преобразования неравенств в равенства вводятся дополнительные переменные, которые обычно обозначают объем недоиспользованных ресурсов. В этом их экономический смысл.

Наконец, если после добавления дополнительных переменных матрица условий не содержит полную единичную подматрицу, то вводятся искусственные переменные, которые не имеют никакого экономического смысла. Они вводятся исключительно для того, чтобы получить единичную подматрицу и начать процесс решения задачи при помощи симплексного метода.

В оптимальном решении задачи все искусственные переменные (ИП) должны быть равными нулю. Для этого вводят ИП в целевую функцию задачи с большими отрицательными коэффициентами (- М) при решении задачи на max, и с большими положительными коэффициентами (+ М), когда задача решается на min. В этом случае даже небольшое ненулевое значение ИП будет резко уменьшать (увеличивать) значение целевой функции. Обычно М в 1000 раз должно быть больше, чем значения коэффициентов при основных переменных.

Второй этап. Строится исходная симплекс-таблица и отыскивается некоторое начальное базисное решение. Множество переменных, образующих единичную подматрицу, принимается за начальное базисное решение. Значения этих переменных равны свободным членам. Все остальные внебазисные переменные равны нулю.

Третий этап. Проверка базисного решения на оптимальность осуществляется при помощи специальных оценок коэффициентов целевой функции. Если все оценки коэффициентов целевой функции отрицательны или равны нулю, то имеющееся базисное решение оптимальное. Если хотя бы одна оценка коэффициента целевой функции больше нуля, то имеющееся базисное решение не является оптимальным и должно быть улучшено.

Четвертый этап. Переход к новому базисному решению. Очевидно, что в оптимальный план должна быть введена такая переменная, которая в наибольшей степени увеличивает целевую функцию. При решении задач на максимум прибыли в оптимальный план вводится продукция, производство которой наиболее выгодно. Это определяется по максимальному положительному значению оценки коэффициента целевой функции.

Столбец симплексной таблицы с этим номером на данной итерации называется генеральным столбцом.

Далее, если хотя бы один элемент генерального столбца а ij 0 строго положителен, то отыскивается генеральная строка (в противном случае задача не имеет оптимального решения).

Для отыскания генеральной строки все свободные члены (ресурсы) делятся на соответствующие элементы генерального столбца (норма расхода ресурса на единицу изделия). Из полученных результатов выбирается наименьший. Соответствующая ему строка на данной итерации называется генеральной. Она соответствует ресурсу, который лимитирует производство на данной итерации.

Элемент симплексной таблицы, находящийся на пересечении генеральных столбца и строки, называется генеральным элементом.

Затем все элементы генеральной строки (включая свободный член) делятся на генеральный элемент. В результате этой операции генеральный элемент становится равным единице. Далее необходимо, чтобы все другие элементы генерального столбца стали бы равны нулю, т.е. генеральный столбец должен стать единичным. Все строки (кроме генеральной) преобразуются следующим образом. Полученные элементы новой строки умножаются на соответствующий элемент генерального столбца и полученное произведение вычитается из элементов старой строки.

Значения новых базисных переменных получим в соответствующих ячейках столбца свободных членов.

Пятый этап. Полученное базисное решение проверяется на оптимальность (см. третий этап). Если оно оптимально, то вычисления прекращаются. В противном случае необходимо найти новое базисное решение (четвертый этап) и т.д.

<== предыдущая лекция | следующая лекция ==>
Геометрическая интерпретация ОЗЛП | Пример решения ОЗЛП симплексным методом
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 454; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.