Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция. Основы теории принятия решений

ВВЕДЕНИЕ

 

Курс «Методы принятия управленческих решений» занимает ключевую позицию в образовательных программах студентов большинства информационных, производственных и экономических специальностей. В процессе его усвоения у студентов должно сформироваться понимание принципов, математических моделей, формулируемых в рамках этих моделей задач и соответствующих методах поиска их решения. Все эти вопросы образуют фундамент, необходимый в современных условиях любому квалифицированному специалисту для решения задач управления различными организационными системами.

Начало развития методов оптимизации связывают с сороковыми годами двадцатого столетия и получило название «Исследование операций». Само название дисциплины связано с применением математических методов для управления военными операциями.

Одним из первых исследований является работа Л. В. Канторовича

«Математические методы организации и планирования производства», вышедшая в 1939 г., а в зарубежной литературе – вышедшая в 1947 г. работа Дж. Данцинга, посвященная решению экстремальных линейных задач. В 1975 г. Л. В. Канторович стал лауреатом Нобелевской премии за свои работы по оптимальному использованию ресурсов в экономике.

50-е и последующие годы были отмечены широким применением в практику полученных фундаментальных теоретических исследований и связанных с этим переосмыслением потенциальных возможностей новой дисциплины. Важный вклад в развитие новой науки также внесли такие видные ученные, как Дж. Фон. Нейман, Д. Гейл, К. Эрроу, Р. Беллман, Р. Гомори, Е. С. Вентцель, М. К. Гавурин и др.ученные.

Конспект лекций разработан на основании рабочей программы для направления подготовки 080500.62 «Менеджмент».

При изложении содержания тем лекций указываются наиболее важные их элементы с рассмотрением теоретических вопросов и примеров практических задач, а также вопросы для самоконтроля. В заключительной части приводятся многочисленные варианты задач по каждой теме, которые позволят студентам лучше усвоить материал при самостоятельном изучении дисциплины в процессе подготовки к сдаче экзамена или зачета.

В перечнях основной и дополнительной литературы указаны современные учебные и периодические издания, включающие задачи с решениями прикладной направленности.

1.1. Общие положения.

1.2. Основные понятия системного анализа.

1.3. Основные понятия, применяемые при решении задач оптимизации.

1.4. Постановка задач принятия оптимальных решений.

1.5. Методология и методы оптимальных решений.

 

<== предыдущая лекция | следующая лекция ==>
Лекция. Нелинейное программирование | Общие положения. Человек наделён сознанием, существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.