КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Перечень задач для решения при усвоении материала
Во всех задачах обязательным является построение математических моделей, указание экономического смысла переменных, приведение расчетов и подробное описание результата решения задачи.
1 ТЕМА. «ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ». Задача 1.1. Предприятие планирует выпускать n видов продукции Пi (i= 1, 2, …, n). При её изготовлении используются ресурсы Р1, Р2, и Р3. прямые затраты ресурсов ограничены соответственно величинами b1, b2, и b3. Расход j-го ресурса (j= 1, 2, 3) на единицу продукции i-го вида составляет aij ед. Цена единицы продукции i-го вида равна Сi денежных единиц. Требуется: 1.Составить математическую модель прямой и двойственной задачи. Раскрыть экономический смысл всех переменных, принятых в задаче; 2.Симплексным методом рассчитать план выпуска продукции по видам с учетом имеющихся ограничении ресурсов, который обеспечивал бы предприятию максимальный доход; 3.Используя решение исходной задачи и соответствия между прямыми и двойственными переменными, найти параметры оптимального плана двойственной задачи; 4.Указать наиболее дефицитный и недефицитный (избыточный) ресурс, если он имеется; 5.С помощью двойственных оценок yj обосновать эффективность оптимального плана, сопоставить оценку израсходованных ресурсов и максимальный доход. Zmax от реализации готовой продукции по всему оптимальному плану и по каждому виду продукции отдельно; 6.Оценить целесообразность приобретения Dbk единиц ресурса K по цене Ck. Необходимые исходные числовые данные приведены в табл. 1.1. Задача 1.2.
Составить диету включающие белки, жиры и углеводы в количестве не менее bi (i = 1, 2, 3). Для составления смеси можно использовать три вида продуктов Bj (j = 1, 2, 3), содержащую белки жиры и углеводы в количестве aij. Цена продуктов Cj. Необходимо определить такой набор продуктов, который обеспечил бы необходимое содержание питательных веществ, и полная стоимость его при этом была бы наименьшей.
Требуется: 1.Составить математическую модель прямой и двойственной задач. Раскрыть экономический смысл всех переменных, принятых в задаче; 2.Симплекс – методом решить двойственную задачу;
Необходимые исходные числовые данные приведена в табл. 1.2.
Табл. 1.1.
Таблица 1.2.
2 ТЕМА. «ТРАНСПОРТНАЯ ЗАДАЧА» Задача 2.1
В пунктах Аi (i=1, 2, 3)производится однородная продукция в количестве аi единиц. Себестоимость единицы продукции в i-м пункте равна Ci. Готовая продукция поставляется в пункты Вj (j=1, 2, 3, 4), потребности которых составляют bj ед. стоимость перевозки единицы продукции из пункта Ai в пункт Bj задана матрицей Cij.
Требуется: 1.Написать математическую модель прямой и двойственной задач с указанием экономического смысла всех переменных; 2.Составить план перевозки продукции, при котором минимизируются суммарные затраты по ее изготовлению и доставке потребителям для условия что продукция произведенная в пункте Ai, где себестоимость её производства наименьшая, распределяется полностью; 3.Вычислить суммарные минимальные затраты Zmin; 4.Узнать в какие пункты развозится продукция от поставщиков; 5.Установить пункты, в которых останется нераспределенная продукция, и указать её объем. Необходимые исходные числовые данные приведены в таблице 2.1. Задача 2.2.
Трудовые бригады Б1, Б2, Б3 численностью, а1, а2, и а3 человек, сформированы для уборки картофеля. Для уборки картофеля на четырех полях П1, П2, П3 и П4 необходимо выделить b1, b2, b3, и b4 работников. Производительность труда работника зависит от урожайности картофеля, а так же от численности бригады и характеризуется для указанных бригад и полей элементами матрицы Pij (в центнерах на человека за рабочий день).
Требуется:
1.Распределить работников каждой трудовой бригады по полям так, чтобы за рабочий день было убрано максимально возможное количество картофеля; 2.Определить сколько центнеров картофеля будет убрано с четырех полей при оптимальном распределении работников.
Необходимые исходные числовые данные приведены в таблице 2.2. Таблица 2.1.
Таблица 2.2.
3 ТЕМА. «ЦЕЛОЧИСЛЕННОЕ ПРОГРАММИРОВАНИЕ» Задача 3.1.
Решить задачу методом ветвей и границ. Данные необходимые для решения, приведены в табл. 3.1.
Таблица 3.1
Дата добавления: 2014-01-04; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |