КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод градиентного спуска
Рассмотрим функцию f, считая для определенности, что она зависит от трех переменных x,y,z. Вычислим её частные производные , , и образуем с их помощью вектор, который называют градиентом функции: Здесь i,j,k- единичные векторы, параллельные координатным осям. Частные производные характеризуют изменения функции f по каждой независимой переменной в отдельности. Образованный с их помощью вектор градиента дает общее представление о поведении функции в окрестности точки (x,y,z). Направление этого вектора является направлением наиболее быстрого возрастания функции. Модуль градиента
определяет скорость возрастания и убывания функции в направлении градиента и антиградиента. Для всех остальных направлений скорость изменения функции в точке (x,y,z) меньше модуля градиента. При переходе от одной точки к другой как направление градиента, так и его модуль, вообще говоря, меняются. Понятие градиента естественным образом переносится на функции любого числа переменных. Основная идея метода градиентного спуска состоит в том, чтобы двигаться к минимуму в направлении наиболее быстрого убывания функции, которое определяется антиградиентом. Эта идея реализуется следующим образом. Выберем каким-либо способом начальную точку, вычислим в ней градиент рассматриваемой функции и сделаем небольшой шаг в обратном направлении. В результате придем в точку, в которой значение функции будет меньше первоначального. В новой точке повторим процедуру. Продолжая этот процесс, мы будем двигаться в сторону убывания функции. Специальный выбор направления движения на каждом шаге позволяет надеяться, что в данном случае приближение к наименьшему значению функции будет более быстрым, чем в методе покоординатного спуска. Метод градиентного спуска требуется вычисления градиента целевой функции на каждом шаге. Если она задана аналитически, то это как правило, не проблема для частных производных, определяющих градиент, модно получить явные формулы. В противном случае частные производные в нужных точках проходится вычислять приближенно, заменяя их соответствующими разностными соотношениями:
Рисунок 5.6.
Отметим, что при таких расчетах нельзя брать слишком малым, а значение функции нужно вычислять с достаточно высокой точностью, иначе при вычислении разности будет допущена большая ошибка. На рисунке 5.6 изображены линии уровня той же функции f(x,y), что и на рисунке 5.5 и проведена траектория поиска её минимума с помощью метода градиентного спуска. Сравнение этих рисунков показывает более высокую эффективность метода градиентного спуска.
Дата добавления: 2014-01-04; Просмотров: 671; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |