Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характеристики иерархической структуры программной системы

Сложность программной системы

В простейшем случае сложность системы определяется как сумма мер сложности ее модулей. Сложность модуля может вычисляться различными способами.

Например, М. Холстед (1977) предложил меру длины N модуля [33]:

N»n1 log 2(n1)+n2 log 2(n2),

где n1 – число различных операторов, n2 – число различных операндов.

В качестве второй метрики М. Холстед рассматривал объем V модуля (количество символов для записи всех операторов и операндов текста программы):

V=N ´ log 2(n1+n2).

Вместе с тем известно, что любая сложная система состоит из элементов и системы связей между элементами и что игнорировать внутрисистемные связи неразумно.

Том МакКейб (1976) при оценке сложности ПС предложил исходить из топологии внутренних связей [49]. Для этой цели он разработал метрику цикломатической сложности:

V(G)=E - N +2,

где Е – количество дуг, а N – количество вершин в управляющем графе ПС.

Это был шаг в нужном направлении. Дальнейшее уточнение оценок сложности потребовало, чтобы каждый модуль мог представляться как локальная структура, состоящая из элементов и связей между ними.

Таким образом, при комплексной оценке сложности ПС необходимо рассматривать меру сложности модулей, меру сложности внешних связей (между модулями) и меру сложности внутренних связей (внутри модулей)[28],[56]. Традиционно со внешними связями сопоставляют характеристику «сцепление», а с внутренними связями – характеристику «связность».

Вопросы комплексной оценки сложности обсудим в следующем разделе.

 

Иерархическая структура программной системы – основной результат предварительного проектирования. Она представляет состав модулей ПС и управляющие отношения между модулями. В этой структуре модуль более высокого уровня (начальник) управляет модулем нижнего уровня (подчиненным).

Иерархическая структура не отражает процедурные особенности программной системы, то есть последовательность операций, их повторение, ветвление и т.д. Рассмотрим основные характеристики иерархической структуры, представленной на рис. 1.17.

Рис 1.17 Иерархическая структура программной системы

Первичными характеристиками являются количество вершин (модулей) и количество ребер (связей между модулями). К ним добавляются две глобальные характеристики – высота и ширина:

- высота – количество уровней управления;

- ширина – максимальное из количеств модулей, размещенных на уровнях управления.

В нашем примере высота=4, ширина=6.

Локальными характеристиками модулей структуры являются коэффициент объединения по входу и коэффициент разветвления по выходу.

Коэффициент объединения по входу Fan_in(i) – это количество модулей, которые прямо управляют i- м модулем. В примере для модуля n: Fan_in(n)=4.

Коэффициент разветвления по выходу Fan_out(i) – это количество модулей, которыми прямо управляет i- й модуль. В примере для модуля m: Fan_out(m)=3.

Возникает вопрос: как оценить качество структуры? Из практики проектирования известно, что лучшее решение обеспечивается иерархической структурой в виде дерева.

Степень отличия реальной проектной структуры от дерева характеризуется невязкой структуры. Как определить невязку? Вспомним, что полный граф (complete graph) c n вершинами имеет количество ребер

ec=n(n-1)/2,

а дерево (tree) c таким же количеством вершин – существенно меньшее количество ребер

et=n-1.

Тогда формулу невязки можно построить, сравнивая количество ребер полного графа, реального графа и дерева.

Для проектной структуры с n вершинами и е ребрами невязка определяется по выражению:

Значение невязки лежит в диапазоне от 0 до 1. Если Nev =0, то проектная структура является деревом, если Nev =1, то проектная структура – полный граф. Ясно, что невязка дает грубую оценку структуры. Для увеличения точности оценки следует применить характеристики связности и сцепления.

Хорошая структура должна иметь низкое сцепление и высокую связность. Л Констентайн и Э. Йордан (1979) предложили оценивать структуру с помощью коэффициентов Fan_in(i) и Fan_out(i) модулей [77].

Большое значение Fan_in(i) – свидетельство высокого сцепления, так как является мерой зависимости модуля. Большое значение Fan_out(i) говорит о высокой сложности вызывающего модуля. Причиной является то, что для координации подчиненных модулей требуется сложная логика управления.

Основной недостаток коэффициентов Fan_in(i) и Fan_out(i) состоит в игнорировании веса связи. Здесь рассматриваются только управляющие потоки (вызовы модулей). В то же время информационные потоки, нагружающие ребра структуры, могут существенно изменяться, поэтому нужна мера, которая учитывает не только количество ребер, но и количество информации, проходящей через них.

С. Генри и Д. Кафура (1981) ввели информационные коэффициенты ifan_in(i) и ifan_out(j) [35]. Они учитывают количество элементов и структур данных, из которых
i- й модуль берет информацию и которые обновляются j- м модулем соответственно.

Информационные коэффициенты суммируются со структурными коэффициентами sfan_in(i) и sfan_out(j), которые учитывают только вызовы модулей.

В результате формируются полные значения коэффициентов:

Fan_in(i)= sfan_in(i)+ ifan_in(i),

Fan_out(j)= sfan_out(j)+ ifan_out(j).

На основе полных коэффициентов модулей вычисляется метрика общей сложности структуры:

где length(i) – оценка размера i- го модуля (в виде LOC- или FP-оценки).


[1] Боэм Б.У. Инженерное проектирование программного обеспечения: Пер. с англ. – М.: Радио и связь, 1985. – 512 с.

<== предыдущая лекция | следующая лекция ==>
Сцепление модулей | Конспект лекций. (для студентов специальности “Автоматизированное управление технологическими процессами”, квалификационный уровень – магистр)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 649; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.