Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы реализации математических моделей

Этапы решения технических задач на ЭВМ

 

Реальные инженерные и физические задачи во всех областях науки и техники обычно решаются посредством использования двух подходов:

– физического эксперимента;

– предварительного анализа конструкций, схем, явлений с целью выбора каких-то их оптимальных параметров.

Первый подход связан с большими и не всегда оправданными затратами материальных и временных ресурсов.

Второй подход связан с математическим моделированием, в основе которого заложены знания фундаментальных законов природы и построение на их основе математических моделей для произвольных технических и научных задач.

Математические модели представляют собой упрощенное описание исследуемого явления с помощью математических символов и операций над ними. Математические модели разрабатываются с соблюдением корректности и адекватности по отношению к реальным процессам, но, как правило, с учетом простоты их технической реализации.

Практика показывает, что возникающие и истребованные технические решения во многом однозначны, что определяет ограниченное число существенно полезных математических моделей, извлекаемых из стандартного справочника «Курс высшей математики». К примеру, из арсенала этих моделей можно назвать такие как линейные и нелинейные уравнения, системы линейных и нелинейных уравнений, дифференциальные уравнения (ДУ), разновидности интегралов, функциональные зависимости, «целевые» функции для решения задач оптимизации и др.

При математическом моделировании важным моментом является первоначальная математическая постановка задачи. Она предполагает описание математической модели и указания цели ее исследования. Для одной и той же математической модели могут быть сформулированы и решены различные математические задачи. Например, для наиболее распространенной модели, такой как функциональная зависимость y = f (x) могут быть сформулированы следующие математические задачи:

1) найти экстремальное значение функции f (x): max f (x) или min f (x);

2) найти значение x, при котором f (x) = 0;

3) найти значение производной f ' (x), значение интеграла и т.д.

Бурное развитие вычислительной техники выдвинуло на передний план при решении практических инженерных и научных задач вычислительную математику и программирование.

Вычислительная математика изучает построение и исследование численных методов решения математических задач посредством реализации соответствующих математических моделей.

Программирование обеспечивает техническую реализацию их.

Обобщенную схему математического моделирования можно представить следующим образом:

 

 

При реализации данного цикла требуют пристального внимания все его компоненты. Заключительным его этапом является получение численного результата и сопоставление его с целевой установкой и, как правило, для достижения желаемого, или приемлемого результата, всегда возникает необходимость изменения или математической модели, или вычислительного метода, или алгоритма, или программы.

Следует подчеркнуть важность и таких этапов данной технологии решения задач на ЭВМ как проведение расчетов и анализ результатов. (А именно, подготовка исходных данных, обоснование выбора вычислительного метода, корректность и точность решения). Важным моментом является также экономичность выбора: способа решения задачи, численного метода, модели ЭВМ, вычислительной среды.

 

Методы реализации математических моделей можно разделить на три группы:

1) графические;

2) аналитические;

3) численные.

Указанные методы используются как самостоятельно, так и совместно.

Графические методы позволяют оценивать порядок искомых величин и направление расчетных алгоритмов.

Аналитические методы (точные, приближенные) упрощают фрагментарные расчеты и позволяют успешно решать задачи оценки корректности и точности численных решений.

Основным инструментом реализации математических моделей являются численные методы, позволяющие свести решение задачи к вычислению конечного числа арифметических действий над числами и получение этого решения в виде числовых значений. Решение, получаемое численными методами, обычно является приближенным, т.е. содержит некоторую погрешность.

 

Раздел 1. Элементы теории погрешностей

 

1.1. Постановка задачи

 

Важнейшим моментом при математическом моделировании является обеспечение достоверности полученных решений. Но из практики известно, что лишь в редких случаях удается найти метод решения, приводящий к точному результату. Как правило, приближенные решения используются совместно с точными решениями, поэтому, наряду с выбором вычислительного метода, с точки зрения оптимальности алгоритма его реализации, важной задачей является оценка степени точности получаемого решения. Ее принято оценивать некоторой численной величиной, называемой погрешностью.

При решении любой практической задачи необходимо всегда указывать требуемую точность результата. В связи с этим необходимо уметь:

1) зная заданную точность исходных данных, оценивать точность результата (прямая задача теории погрешностей);

2) зная требуемую точность результата, выбирать необходимую точность исходных данных (обратная задача теории погрешностей).

 

<== предыдущая лекция | следующая лекция ==>
Минск 2008 | Приближенные числа и оценка их погрешностей
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1366; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.