Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие сведения о высокомолекулярных соединениях

Тема 11. Технология высокомолекулярных соединений

Пластмассы, каучуки, химические волокна и полимерные композиционные материалы как основные виды полимерных материалов. Доля полимерных материалов в валовой химической продукции индустриально развитых стран. Способы осуществления реакций полимеризации в газовой фазе, в растворе, в суспензии, в эмульсии и блочная полимеризация. Преимущества и недостатки этих способов. Промышленное получение полиэтилена, полипропилена, полистирола, поливинилхлорида, а так же сополимеров на их основе. Сравнение различных технологических схем получения ПЭ (низкой и высокой плотности). Поликонденсационные процессы и их технологическое оформление. Феноло-формальдегидные и мочевино-альдегидные, наволачные и резольные смолы. Кремнийорганические полимеры. Полиуретаны. Основные свойства и области их применения. Химические волокна: искусственные на основе целлюлозы и синтетические. Основные приемы формирования волокон из растворов и расплавов. Свойства и области применения. Производство синтетических каучуков. Каучуки специального назначения. Переработка каучука в резину. Экологические аспекты производства полимерных материалов и изделий на их основе.

Вся окружающая нас живая и неживая природа построена из мо­лекул, которые в свою очередь состоят из атомов. Атомы, соединяясь между собой в различных соотношениях, образуют молекулы, которые отличаются друг от друга размерами, строением, химическим составом и свойствами.

Вещества, построенные из небольшого числа атомов, называются низкомолекулярными. Их молекулярный вес не превы­шает нескольких сотен единиц. Низкомолекулярными веществами являются соли, кислоты, щелочи, спирты и другие соединения.

В то же время многие вещества состоят из гигантских молекул, в состав которых входят тысячи, десятки и сотни тысяч атомов. Такие молекулы называют макромолекулами; их молекулярный вес достигает сотен и даже тысяч единиц. Например, молекулярный вес молекул, входящих в состав натурального каучука, составляет 136 000—340 000.

Соединения, построенные из макромолекул, называют высоко­молекулярными или полимерами.

Полимеры по происхождению подразделяют на природные и син­тетические.

К природным, т. е. естественным, полимерам относятся целлюлоза, входящая в состав древесины, хлопка и других растений; белки, входящие в состав живых организмов; натуральный каучук и др.

Синтетические полимеры получают искусственно, путем химического синтеза; они входят в состав пластических масс, синтетических каучуков, химических волокон, лаков и др.

Состав и свойства полимеров. Молекулы полимеров представляют собой длинные цепи, в которых чередуются одинаковые звенья. Если обозначить эти звенья буквой А, то молекулу полимера можно представить так:

В синтетических полимерах эти звенья являются остатками молекул исходных соединений, состоящих всего из нескольких атомов. Эти исходные соединения называются мономерами. Например, этилен СН2СН2 — мономер для получения высокомолекулярного соединения, называемого полиэтиленом. При образовании полимера у молекул этилена двойная связь между, атомами углерода раскрывается, и за счет образующихся свободных валентностей углерода большое число получившихся из мономера звеньев соединяется друг с другом. Схематически это можно представить следующим образом:

На схеме показано только три звена в составе полимера, факти­чески количество их в полиэтилене от 1000 до 10 000, а молекулярный вес такого полимера колеблется от 28 000 до 280 000.

Из приведенной схемы видно, что как в мономере, так и в полимере на один атом углерода приходятся два атома водорода, т. е. элементарный со­став получаемого полимера одинаков с мономером.

С изменением числа связанных между собой молекул мономера про­исходит изменение свойств получаемых полимеров. Так, полиэтилен по мере увеличения молекулярного веса ста­новится более вязким, затем пастообразным и, наконец, твердым. Свойства полимеров зависят также от химическо­го состава мономеров, формы цепей мо­лекул и их строения (структуры поли­мера).

В макромолекуле линейной структуры элементарные звенья образуют нитевидную молекулу, т. е. каждое звено связано только с двумя соседними звеньями (рис. а). Ните­видные (линейные) макромолекулы мо­гут быть расположены в полимере парал­лельно друг другу (рис. б) или пе­реплетаться без химической связи от­дельных макромолекул (рис. в). Они могут быть изогнутыми, свернутыми в клубок (рис. г, д) и т. д. Макромоле­кулы линейной структуры характерны для полиэтилена, полипропилена, цел­люлозы, полиэфиров, полиамидов и многих других высокомолекулярных соединений, широко используемых для получения волокон, пленок, пластмасс, резины. Эти полимерные материалы, как правило, прочны, эластичны, способны растворяться и плавиться при нагревании.

Макромолекулы разветвленной структуры имеют боковые ответвления от основной цепи (рис. е). Полимеры с разветвленной структурой молекул растворяются и плавятся труднее, чем линейные.

Макромолекулы с сетчатой структурой построены следующим образом: длинные цепи молекул связаны друг с другом короткими цепями в трех измерениях, что на рисунке изобразить трудно. Обычно такую структуру полимерных молекул изображают в виде соединенных между собой линейно построенных больших мо­лекул (рис ж). При этом всегда имеется в виду, что линейные мо­лекулы химически связаны с молекулами, расположенными над пло­скостью и за плоскостью бумаги. Такую структуру молекул назы­вают также пространственной или трехмерной. Чем больше число «мостиков» в такой макромолекуле, тем менее эластичен полимер и у него в значительной степени проявляются свойства твер­дого тела.

Структура цепей полимерных молекул может быть различной. В одних случаях образуются полимерные молекулы, у которых эле­ментарные звенья имеют различное пространственное расположение боковых групп, в других — строго регулярное пространственное расположение. Полимеры со строго регулярной структурой молекул называются изотактическими. Такого типа полимеры об­ладают высокой твердостью и теплостойкостью.

Молекулы полимеров могут состоять не из одинаковых звеньев. Они могут быть получены из разных мономеров, например А и Б. Тогда макромолекула может быть изображена так:

Такие высокомолекулярные соединения называются сополиме­рами. Они совмещают в себе характерные свойства полимеров, полученных из каждого компонента в отдельности.

Таким образом, удается придавать полимерам некоторые специ­фические свойства, например, получать каучуки с повышенной бензо-и маслостойкостью, химической стойкостью и т. д.

Представляют интерес так называемые привитые сополи­меры. Цепи их молекул построены по следующей схеме:

 

 

Такой полимер можно сравнить с плодовым деревом, к которому привит другой сорт плодового дерева. В результате такой «прививки» получают плоды, сочетающие в себе наиболее ценные качества обоих сортов. В привитом сополимере один полимер привит к «стволу» другого полимера. Полученный «гибрид» обладает свойствами исходных веществ. Таким образом, удается получать полимеры, сочетающие например, высокие электроизоляционные свойства с огнестойкостью и устойчивостью к бензину и маслам.

Макромолекулы могут быть построены из «блоков» сравнительно невысокого молекулярного веса, полученных из различных мономе­ров. Схема такого блок-сополимера имеет вид:

 

 

Блок-сополимеры также сочетают в себе свойства исходных поли­меров.

До сих пор элементарные звенья в макромолекуле обозначали ус­ловно А и Б. Видно, что в основе органи­ческих полимеров лежит углерод, атомы которого соединились между собой, образуя «скелет» молекулы, обрамленный атомами водорода. Вместо атомов водорода могут быть группы атомов, в которых наряду с атомами углерода могут присутствовать атомы других элементов.

Если скелет молекул полимеров построен из атомов углерода, их называют карбоцепными. Существуют молекулы, в скеле­те которых атомы углерода периодически чередуются с атомами других элементов, например:

 

 

Такие полимеры называют гетероцепными.

Поведение полимеров при нагревании зависит от структуры моле­кул. Линейные и разветвленные полимеры при нагревании размягча­ются, при последующем охлаждении переходят в твердое состояние. Такие полимеры называются термопластичными. Полиме­ры, молекулы которых имеют пространственную структуру, не пла­вятся при нагревании: их называют термореактивными.

Температура перехода полимера из твердого состояния в эластич­ное (или наоборот) называется температурой стеклова­ния, температура перехода в текучее состояние — температурой текучести.

Полимеры могут быть или полностью аморфными веществами — аморфные полимеры, или веществами, содержащими кри­сталлические и аморфные области, — кристаллические по­лимеры. По видам деформаций, которые возникают в полимерах под влиянием внешних условий при комнатной температуре, их под­разделяют на твердые полимеры, эластичные по­лимеры, или эластомеры, и текучие полимеры.

Таким образом, изменяя величину получаемой макромолекулы, ее молекулярный вес и форму, составляя макромолекулу из различ­ных исходных мономеров, прививая к одной макромолекуле цепочку полимера из звеньев, образованных другим мономером, можно в ши­рокой степени изменять физические и химические свойства полиме­ров, получать их с заранее обусловленными свойствами, изменять их физическое состояние, делать жидкими, твердыми, пластичными и эластичными.

Полимеры обладают малой плотностью (самые легкие пластические массы в 800 раз легче стали), высокой механической прочностью (превышает прочность дерева, стекла, керамики), высокими термо-, звуко- и электроизоляционными свойствами, высокой химической стой­костью, прекрасными оптическими свойствами, они способны поглощать и гасить вибрации, образовывать чрезвычайно тонкие пленки и волокна, они легко поддаются обработке и переработке в изделия. Ценные свойства полимеров обусловили их широкие использование в различных отраслях народного хозяйства: в машиностроении, строи­тельстве, автомобильной, авиационной, атомной, космической и дру­гих отраслях техники, для изготовления тканей, искусственной кожи, предметов домашнего обихода, в медицине и т. д.

Производство полимерных материалов у нас в стране развивается очень быстрыми темпами, превышающими темпы роста всей промыш­ленности и других отраслей химической промышленности.

<== предыдущая лекция | следующая лекция ==>
Основного органического синтеза | Способы синтеза полимеров
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1218; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.