1. Собственные значения самосопряженного оператора вещественны.
2. Если A – самосопряженный оператор, то собственные векторы, отвечающие различным собственным значениям этого оператора ортогональны.
Определение.Квадратичной формой называется однородный многочлен второй степени относительно n переменных . Квадратичную форму всегда можно представить в виде: , (), где - симметрическая матрица (т.е. ).
Если – вещественная симметричная матрица, то форма называется вещественной, – самосопряженная.
В дальнейшем будем рассматривать вещественные квадратичные формы.
Теорема. Для каждой квадратичной формы существует базис, в котором она имеет канонический вид (т.е. представляет сумму квадратов) или такой вид в котором матрица квадратичной формы имеет диагональный вид.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление