Эмпирической функцией распределения называется функция
,
где - число элементов выборки меньше числа , - объем выборки. Нетрудно показать, что эмпирическая функция распределения удовлетворяет тем же условиям, что и функция распределения . при каждом значении сходятся по вероятности к функции распределения при .
Пример 6.2.1. Пусть - случайная величина- оценка на экзамене по некоторому предмету и пусть дана выборка объема =10.
.
Построить графики статистического распределения (полигон частот) и эмпирической функции распределения.
Решение. Вариационный ряд в этом случае имеет вид: .
Строим таблицу, представляющую собой статистическое распределение дискретной случайной величины:
Таблица 6.2.1
0,1
0,3
0,4
0,2
Тогда искомые графики имеют следующий вид (рис.6.2.2 а, б):
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление