КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
История развития музыкально-компьютерных технологий
Казалось бы, не так много лет прошло с того времени, когда первые компьютеры, занимавшие целые комнаты и при этом абсолютно не предназначенные для написания музыки, превратились в небольшие персональные компьютеры, сочетающие в себе возможности работы не только с расчетами, но и с графикой, видео, звуком и многим другим. В условиях роста во всех сферах деятельности, кажется, абсолютно логичным введение компьютера в образовательный процесс не только как такового, но и как вспомогательного средства для обучения. Проведем краткий экскурс в историю возникновения первых попыток соединения бездушных машин с искусством. Очень давно, еще со времен Пифагора, а может быть, и раньше, математики обратили внимание на формальную сторону организации музыки – временную и частотную шкалы. Однако механизмы, воспроизводящие музыку по программе, появились до механизмов-калькуляторов, поэтому мы рискнули бы назвать музыкантов самыми первыми программистами. Впрочем, и в письменном наследии древних культур, пожалуй, нотные записи как описание временного процесса, ближе всего к текстам программ. И в той и в другой форме есть блоки, условия, циклы и метки, только далеко не все программисты и музыканты знают об этих параллелях. Но если помнить о них, уже нельзя удивляться тому, что, создавая самые первые ЭВМ, инженеры заставляли их воспроизводить мелодии. Правда, музыканты не могли относить машинную музыку к настоящей, возможно, потому, что в ней не было ничего, кроме «мертвых» звуков или плана. Да и сам машинный звук, являвшийся на первых шагах простым меандром, был крайне далек от звучания акустических инструментов. Однако многочисленные эксперименты с электронными машинами, способными извлекать звук, привели к возникновению различных способов написания музыки, а отсюда и к появлению разнообразных стилей и направлений. Новое звучание, необычное и непривычное уху стало новаторством в музыке. Многие известные современные композиторы, например, К. Штокхаузен, О. Мессиан, А. Шнитке, несмотря на сложность работы с техникой, создавали произведения с применением новых электронных инструментов или только на них. Следующим этапом развития музыкальных компьютерных технологий стали исследования и разработки методов синтеза звука. Инженеры обратились к анализу спектров акустических инструментов и к алгоритмам синтеза электронных тембров. Вначале расчет звуковых колебаний выполнялся центральным процессором, но, как правило, не в реальном времени. Поэтому на первых ЭВМ создание музыкального произведения было очень утомительным процессом. Надо было закодировать ноты и назначить тембры, затем запустить программу для расчета звуковой волны и подождать несколько часов, чтобы послушать результат. Если музыкант, а точнее, программист-оператор, вносил какое-то изменение в партитуру-программу, ему снова до прослушивания приходилось несколько часов ждать. Понятно, что такая музыкальная практика не могла быть массовой, но исследователям феномена музыки хотелось пойти дальше, чем простое применение машины в качестве электронной музыкальной шкатулки. Так возникло другое – вполне естественное – направление в музыкальном использовании ЭВМ: порождение, генерация самого нотного текста. Уже в 50-х годах, используя самые первые ЭВМ, ученые делали попытки синтезировать музыку: сочинять мелодию или аранжировать ее искусственными тембрами. Так появилась алгоритмическая музыка, принцип которой был предложен еще в 1206 году Гвидо Марцано, а позднее применен В. Моцартом для автоматизации сочинения менуэтов – написание музыки согласно выпадению случайных чисел. Созданием алгоритмических композиций занимались П. Булез, Я. Ксенакис, К. Шеннон и др. Автором знаменитой «Иллиак-сюиты» (1957 г.) был, прежде всего компьютер, а соавторами – композитор Лейярен Хиллер и программист Леонард Айзексон. Три части близки к музыке строгого стиля, а в четвертой применены математические формулы, никак не связанные с музыкальными стилями. П. Булез и Я. Ксенакис создавали специальные программы для своих произведений, каждую к конкретному сочинению. Первым сочинением Я. Ксенакиса, демонстрирующим стохастический (или алгоритмический) метод музыкального сочинения, стал «Метастасис» (1954 г.) – произведение, в котором Я. Ксенакис вычислил алгоритм, примененный затем им, для осуществления архитектурного проекта Корбюзье в виде павильона «Филипс» на Всемирной выставке в 1958 году. История развития музыкальных компьютерных технологий во многом связана с российскими учеными и исследователями. Л. Термен, Е. Мурзин, А. Володин создали уникальные средства синтеза звука не «после», а «до» западных коллег. Над проблемами распознавания и автонотировки работал А. Тангян. Анализу и генерации нотных текстов, созданию алгоритмических композиций посвятил свои исследования Р. Зарипов, «сочинявший» музыкальные пьесы на машине «Урал». Основой таких алгоритмов был детально прописанный процесс для различных элементов музыкальной фактуры (форма, ритм, звуковысотность и т. д.). Зарипов вывел целый набор математических правил для составления таких мелодий. «Уральские напевы», как назвал он эти мелодии, были одноголосными и представляли собой либо вальс, либо марш. Причем это лишь имена тех исследователей, работы которых признаны за пределами России. Однако было много и других, локальных разработок. Не единственная, но одна из заметных – первая отечественная звуковая карта и MIDI-интерфейс для ПЭВМ «Агат-7» (аналог Aplle II) со своим музыкальным программным обеспечением. Все это было еще в середине 80-х гг. XX века, когда IBM-XT были еще далеко не во всех технических вузах, а рядовой пользователь понятия не имел о торговых марках Sound Blaster (Creative Labs, http://www.creat.com) и Voyetra (Voyetra Technologies, http://www.voyetra.com). Как и в других областях (например, в графике и анимации), в музыкальных компьютерных технологиях разрабатывались два принципиально разных подхода. Первый связан с управлением параметрической моделью звука, партии, произведения, второй – с оперированием аналогом реального объекта. Оба подхода имеют как преимущества, так и недостатки и постоянно развиваются. В то время как одни инженеры добивались максимального правдоподобия в синтезе акустических тембров, другие разрабатывали методы оперирования реальным звуком. Если первые решали задачи оптимизации параметров синтеза и исполнительского управления, то вторые работали над компрессией и декомпрессией данных, т. е. над проблемами звуковых волн. Но для инженера всегда привлекательнее параметрические модели объектов, они значительно лучше подходят для оперирования и трансформации. Весь вопрос в том, насколько точно модели описывают реальный объект, если целью является достижение правдоподобия. Из исследований в области психологии восприятия известно, что особую роль в процессе распознавания образов играют пороги достоверности и механизмы восстановления образов. Непрофессионал сейчас уже не сможет отличить синтезированный тембр рояля от настоящего именно потому, что не обладает высоким порогом достоверности. И вполне возможно, что будущее музыкальных компьютерных технологий – за параметрическим моделированием. Существующее сегодня огромное количество программ/сред основаны на трех базовых методах: стохастический, некоего фиксированного алгоритма и систем с искусственным интеллектом. Стохастический метод основан на генерировании произвольных серий звуков либо музыкальных отрывков и может быть представлен как с применением компьютера, так и без него, как например, в творчестве Штокхаузена. Собственно алгоритмический метод представляет собой набор неких алгоритмов, реализующих замысел композитора. Алгоритм может быть представлен как композиционная техника, так и модель, генерирующая звук. Возможно и объединение этих двух функций. Уникальной системой программирования звука является программа CSound, которая является основным инструментом музыкантов-элетроакустиков. Программа использует практически любой тип синтеза, включая FM, AM, субтрактивный и аддитивный, физическое моделирование, ресинтезис, гранулярный, а также любой другой цифровой метод. На основе CSound создано множество других систем (AC Toolbox, CYBIL, Silence и др.). Для музыканта создание композиций в такой среде несколько затруднено, так как требует навыков и знания по программированию (хоть разработчики и уверяют в обратном). Композитор записывает команды в два текстовых файла, один из которых отвечает за описание самого тембра/инструмента, во втором должна находиться собственно партитура. В программе существует бесчисленное количество операторов, тех кирпичиков, из которых и складывается программируемое нами звуковое пространство. Не менее популярной средой для программирования виртуальных инструментов и создания алгоритмов интерактивного исполнения является программа MAX/MSP, разработанная парижским Институтом электронной музыки (IRCAM). Реализована она в виде программного приложения с объектно-ориентированным пользовательским интерфейсом. Возможности такой среды включает в себя в первую очередь создание интерактивной музыки (во время выступления, написанный заранее программный модуль взаимодействует с исполняемой музыкой посредством MIDI-интерфейса). Работать в такой среде – одно удовольствие, так как она дает полную свободу действий, как композитору, так и исполнителю. Эта программа широко используется во время живых концертов – звучание одной и той же пьесы на разных концертах будет другим, неизменным остается только алгоритм взаимодействия компьютера и исполнителя. Программу используют многие крупные композиторы такие, как Ричард Буланже (Richard Boulanger) и Дрор Файлер (Dror Feiler). Наконец, возможно использование систем, применяющих искусственный интеллект. Это также системы, основанные на правилах, но главной их особенностью становится способность к обучению. Целью является создание композиций, обладающих чувством, тонкостью и интеллектуальной притягательностью. Созданный в результате алгоритм может быть как собственно автономной, но искусственно созданной, музыкальной системой, так и основанной посредством анализа творчества какого-либо композитора. Анализируя то или иное сочинение, выводится некий набор композиционных правил, инструкций по тематическому развитию, тембровому, фактурному. И здесь возникает парадоксальный случай, с одной стороны, мы имеем машину, способную выдавать продукт, более-менее приближающийся к человеческому эталону, но, с другой – несущую на себе печать техники данного композитора. То же можно сказать и о композиторах, создавших свои алгоритмические программы. В таких сочинениях четко разделяются функции композитора и собственно «композиторский процесс» программы. Сегодня машина пока еще не способна превзойти человеческий интеллект и превратить свой продукт в искусство. Та или иная система не способна самостоятельно порождать мысли, чувства. При любой степени совершенства она никогда не станет не только «гениальным», но и «талантливым» композитором. Даже идеальная машина не сможет обрести то неуловимое, что всегда будет разграничивать живую природу и неживую (пусть и доведенную до идеальной степени совершенства). Однако она стала хорошим подспорьем в руках мастера, композитора, избавив его от потери огромного количества времени на технологические расчеты и построения, которые усложняются в нарастающей прогрессии по мере расширения сферы выразительных средств музыки. Таким образом, сегодня для музыкантов компьютер открывает широкие возможности для творческого поиска. В таком специфическом виде деятельности, как музыкальное искусство, компьютер является не только отличным помощником, но, в некоторых случаях, советчиком и учителем. Можно перечислить лишь некоторые возможности музыкального компьютера: запись, редакция и печать партитур; запись, редактирование и дальнейшее исполнение паpтитуp при помощи компьютерных звуковых карт или внешних синтезаторов, подключенных с помощью интерфейса MIDI; оцифровка звуков, шумов, имеющих различную природу, и дальнейшая их обработка и преобразование с помощью программ секвенсоров; гармонизация и аранжировка готовой мелодии с применением выбранных музыкальных стилей и возможностью их редакции вплоть до изобретения своих собственных (стилей); сочинение мелодий на случайной основе путем последовательного выбора музыкальных звуков; управление звучанием электронных инструментов путем введения определенных параметров до начала исполнения; запись партий акустических инструментов и голосового сопровождения в цифровом формате с последующим их хранением и обработкой в пpогpаммах-pедактоpах звука; пpогpаммный синтез новых звучаний при помощи математических алгоритмов; запись звуковых компакт-дисков. Все эти многообразные возможности компьютера позволяют использовать его как в области музыкального образования, так и в области профессионального творчества композиторов, звукорежиссеров, аранжировщиков.
Дата добавления: 2014-01-04; Просмотров: 1189; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |