Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Асимптоты

 

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

 

Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

 

 

Вертикальные асимптоты:

Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x).

 

Например, для функции прямая х = 5 является вертикальной асимптотой.

 

Наклонные асимптоты:

 

Предположим, что кривая y = f(x) имеет наклонную асимптоту

y = kx + b.

 

.

Пример. Найти асимптоты и построить график функции .

 

1) Вертикальные асимптоты: y®+¥ x®0-0: y®-¥ x®0+0, следовательно, х=0 вертикальная асимптота.

 

2) Наклонные асимптоты:

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Построим график функции:

 

Пример. Найти асимптоты и построить график функции .

 

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

 

Найдем наклонные асимптоты:

y = 0 – горизонтальная асимптота.

Пример. Найти асимптоты и построить график функции .

 

Прямая х = -2 является вертикальной асимптотой кривой.

 

Найдем наклонные асимптоты.

 

 

Итого, прямая у = х – 4 является наклонной асимптотой.

 

 

Схема исследования функций

 

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

 

  1. Область существования функции.
  2. Это понятие включает в себя и область значений и область определения функции.
  3. Точки разрыва. (Если они имеются).
  4. Интервалы возрастания и убывания.
  5. Точки максимума и минимума.
  6. Максимальное и минимальное значение функции на ее области определения.
  7. Области выпуклости и вогнутости.
  8. Точки перегиба.(Если они имеются).
  9. Асимптоты.(Если они имеются).
  10. Построение графика.

Пример. Исследовать функцию и построить ее график.

 

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = -; x = ; x = -1; x = 1.

 

Найдем вторую производную функции

.

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках. Определим выпуклость и вогнутость кривой на промежутках.

 
+ +
 
y¢¢ + + +
  U U U

Видно, что точка х = - является точкой максимума, а точка х = является точкой минимума. Значения функции в этих точках равны соответственно 3/2 и -3/2.

 

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

 

<== предыдущая лекция | следующая лекция ==>
Выпуклость и вогнутость кривой. Точки перегиба | Конспект лекции
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 410; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.