Проанализируем теперь движение квантовой частицы. Пусть , тогда 1 – область слева от барьера, 2 - область барьера, 3 - область справа от барьера. Волновые функции частицы в этих областях обозначим соответственно. Запишем уравнение Шрёдингера для каждой области: Первая область
Падающая+отраженная
Вторая область: . Третья область: . Решения этих уравнений имеют вид (очевидно и ): , ,
Так как в первой области решение содержит отраженную волну, то это означает, что частица имеет конечную вероятность отражения от барьера (у классической частицы вероятность равна 1). Так как в третьей области есть прошедшая волна, то у частицы есть вероятность прохождения за барьер (с классической точки зрения в принципе не может быть). Такая способность квантовых частиц проникать сквозь потенциальный барьер при получила название туннельный эффект. Коэффициенты связаны между собой Эта связь может быть определена из условий непрерывности и на границах барьера: , , Для описания туннельного эффекта используются не сами коэффициенты, а их отношения. Вероятность отражения частицы от потенциального барьера – коэффициент отражения R и вероятность прохождения частицы сквозь барьер – коэффициент прозрачности барьера D. , . Оба коэффициента связаны соотношением.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление