Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частица в одномерной прямоугольной потенциальной яме. Квантование состояний

Пространственно ограниченное квантовое движение- одномерное движение чатицы, находящейся в силовом поле, энергия взаимодействия с которым имеет вид бесконечно глубокой потенциальной ямы с вертикальными стенками. Находясь внутри ямы, частица движется свободно на участке , а на краях силовое поле возвращает ее обратно в яму.

Потенциальная яма , где - ширина ямы, а энергия отсчитывается от ее дна. Никакая частица не может выйти из этой ямы. Если частица классическая, то на участке она движется с неизменным импульсом и энергией. Достигая стенок ямы, частица испытывает упругий удар и меняет направление на противоположное. Частота таких колебаний частицы зависит от скорости частицы и ширины ямы . В зависимости от скорости, если

1) , то положим равной 0; 2): частица движется между стенками, и график плотности распределения вероятности будет выглядеть в виде прямой (см. рисунок).

Для реальной частицы: запишем уравнение Шредингера, учитывая что внутри ямы U=0: . За пределы ямы частица не проникает, поэтому волновая функция вне ямы равна 0, следовательно, на границах ямы . С учетом граничных условий волновая функция должна представлять собой стоячую волну. Решение ищем в виде . . . По второму граничному условию: . , где n - квантовое число. Для определения const C используем условие нормировки: , т. к. вероятность обнаружения частицы внутри ямы равна 1, следовательно . Как видно, волновые функции обращаются в ноль на границах ямы. Внутри ямы они представляют собой отрезки синусоиды. Основное условие, котрое должно выполняться,- на ширине ямы должно укладываться целое количество для каждой синусоиды. Количество этих половинок определяется значением целого числа n. Анализ графиков показывает, что вероятность нахождения квантовой частицы в потенциальной яме зависит от координаты x. Так в случае n=1 наибольшая вероятность существует для центра ямы и т.д. Получили, что если у классической частицы плотность вероятности внутри потенциальной ямы всюду одинакова, то у квантовой частицы она является функцией координат. Рассмотрим Е: из граничных условий, то, где , т. е. есть множество значений энергии, которые частица не принимает. Таким образом, энергия дискретна, т. е. квантована. Чем меньше , тем выше ; состояния частицы дискретны. Энергия пробегает ряд значений, не равных 0. Разрешенные энергии частицы называются энергетическими уровнями, они появляются, если частица ограничена в пространстве. Разность энергий двух соседних уровней . С увеличением n соседние уровни удаляются друг от друга. Величина энергетического зазора между уровнями зависит также от массы частицы m и ширины ямы l. Чем меньше эти величины, тем больше расстояние между уровнями. С увеличением ширины ямы или массы частицы уровни сгущаются и их дискретность все менее заметна. В пределе беск широкой ямы или частицы с беск большой массы получаем классический непрерывный спектр энергии.

Изобразим волновую функцию на фоне уравнений при .

- основное состояние (основной энергетический уровень).

У классической частицы этот график выглядит в виде прямой, параллельной оси Ох.

 

Минимальное значение энергии . Состояние частицы с такой энергией называется основным состоянием. То, что квантовая частица не может иметь энергию, равную нулю согласуется с принципом неопределенности. Волновая функция и энергия состояния квантовой частицы в потенциальной яме однозначно определяются величиной целого числа n, которое определяется квантовым числом системы.

 

 

<== предыдущая лекция | следующая лекция ==>
Туннельный эффект | Частица в двумерной потенциальной яме. Вырождение состояний
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 977; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.