Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Практическое занятие 2


Задачи

Теория

Практическое занятие 1.

Положение материальной точки в пространстве задается радиусом-векторомг:

 
 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где— перемещение материальной точки за интервал времени.

Средняя путевая * скорость

 

где — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси

координат.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где начальная координата; t — время. При равномерном движении

v=const и a=0.

• Кинематическое уравнение равнопеременного движения()вдоль оси x

где v0 —начальная скорость; t— время.

Скорость точки при равнопеременном движении

v=v0+at.

 

 

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени:.

Тогда в заданный момент времени t1 мгновенная скорость

v1=B+3Ct12 Подставим сюда значения В, С, t1 и произведем вычисления:



v1=-4 м/с.

Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:

Мгновенное ускорение в заданный момент времени t1 равно a1=6Ct1. Подставим значения С, t1 и произведем вычисления:

a1=(—6 0,5 2) м/с=—6 м/с.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

xmax=x/t=2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t1=l с и t2=6 с:

x1 = А + Bt1 + Ct12 = 8 м, x2 = А + Bt2 + Ct22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с Координата, м t1=0 x0=A=5 t1=1 x0=8 tB=2 xmax=9 =5 x=0 t2=6 x2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (tB) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость <vx> за интервал времени t2—t1 определяется выражением

<vx>=(x2-x1)/(t2—t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

<vx>=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость <v> находим из выражения

<v>=s/(t2-t1),

где s — путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S1=xmaxx1, который точка прошла за интервал времени tB—t1, и S2=xmax+|x2|, который она прошла за интервал

 

Рис. 1.2

T2—tB. Таким образом, путь

S = S1 + S2 = (xmaxx2) + (xmax + |x2|) == 2xmax + |x2|—x1.

Подставим в это выражение значения xmax , |x2|, x1 и произведем вычисления :

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость



<v>=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

 

 

Прямолинейное движение

1.1. Две прямые дороги пересекаются под углом =60°. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч.

 

Определить скорости v' и v", с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.

1.2. Точка двигалась в течение t1=15 c со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость <v> точки.

1.3. Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути — со скоростью v2=80 км/ч. Какова средняя путевая скорость <v> автомобиля?

1.4. Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую — со скоростью v2=8 м/с. Определить среднюю путевую скорость <v> .

1.5. Тело прошло первую половину пути за время t1=2 с, вторую — за время t2=8 с. Определить среднюю путевую скорость <v> тела, если длина пути s=20 м.

1.6. -Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость <v> за время t=14

 


 

Рис. 1.5

1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.

1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

1.10. Движение материальной точки задано уравнением x=At+Bt2, где A =4 м/с, В=—0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.

1.11. Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой позиции рисунка — а, б, в, г — изображена координатная ось Ох, указаны начальные положение x0 и скорость v0 материальной точки А, а также ее ускорение а.

1.12. Прожектор О (рис. 1.7) установлен на расстоянии l==100 м от стены АВ и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время Т=20 с. Найти: 1) уравнение движения светлого пятна по стене в течение первой четверти оборота; 2) скорость v, с которой светлое пятно движется по стене, в момент времени t=2 с. За начало отсчета принять момент, когда направление луча совпадает с ОС.

1.13. Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением а=0,1 м/с2, человек начал идти в том же направлении со скоростью v=1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v1 поезда в этот момент и путь, пройденный за это время человеком.

1.14. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v1==l м/с и ускорением a1=2 м/с2, вторая — с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?




1.15. Движения двух материальных точек выражаются уравнениями:

x1=A1+B1t+C1t2, x2=A2+B2t+C2t2,

где A1=20 м, A2=2 м, B1=B2=2 м/с, C1= — 4 м/с2, С2=0,5 м/с2.

В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v1 и v2 и ускорения a1 и а2 точек в этот момент:

1.16. Две материальные точки движутся согласно уравнениям;

x1=A1t+B1t2+C1t3, x2=A2t+B2t2+C2t3,

где A1=4 м/c, B1=8 м/с2, C1= — 16 м/с3, A2=2 м/с, B2= - 4 м/с2, С2=1м/с3

В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.

1.17. С какой высоты Н упало тело, если последний метр своего пути оно прошло за время t=0,1 с?

1.18. Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения?

1.19. Камень брошен вертикально вверх с начальной скоростью v0==20 м/с. По истечении какого времени камень будет находиться на высоте h=15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.

1.20. Вертикально вверх с начальной скоростью v0=20 м/с брошен камень. Через =1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни?

1.21. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.

1.22. С балкона бросили мячик вертикально вверх с начальной скоростью v0=5 м/с. Через t=2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

1.23. Тело брошено с балкона вертикально вверх со скоростью v0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость <v> с момента бросания до момента падения на землю.

1.24. Движение точки по прямой задано уравнением x=At+Bt2, где A =2 м/с, В=—0,5 м/с2. Определить среднюю путевую скорость <v> движения точки в интервале времени от t1=l с до t2=3 с.

1.25. Точка движется по прямой согласно уравнению x=At+Bt3, где A=6 м/с, В == —0,125 м/с3. Определить среднюю путевую скорость <v> точки в интервале времени от t1=2 с до t2=6 с.

 

 

<== предыдущая лекция | следующая лекция ==>
Соотношения (10.46) и (10.52) показывают, что энергия тела и его импульс зависят от системы отсчета, принятой в данном конкретном случае. Покажем, что величина | Примеры решения задач по кинематике криволинейного движения

Дата добавления: 2014-01-04; Просмотров: 746; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.016 сек.