Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Строение и виды теорем

Отношение следование и равносильности между предложениями. Необходимое и достаточное условие

 

Часто встречаются такие предикаты, что из истинности одного из них следует истинность другого. Например, можно сказать, что из предиката А (х): «число х кратно 9» следует предикат В (х): «число х кратно 3», т.к. мы знаем, что при всех значениях х, при которых истинно утверждение «число х кратно 9» будет и истинно утверждение «число х кратно 3».

Определение. Предикат В (х) следует из предиката А (х), если В (х) обращается в истинное высказывание при всех тех значениях х, при которых истинен предикат А (х).

В этом случае говорят, что данные предложении находятся в отношении логического следования и обозначают: А (х) Þ В (х).

Выясним в каком отношении находятся области истинности предикатов А (х) и В (х).
ТА = {9; 18; 27; …}, ТВ = {3; 6; 9; 12; 15; 18; …}. Видим, что ТА Ì ТВ.

Таким образом, А (х) Þ В (х) Û ТА Ì ТВ.

Если А (х) Þ В (х), то предикат В (х) называют необходимым условием для А (х), а предикат А (х) – достаточным условием для В (х).

Так, утверждение о том, что если число кратно 9, то оно кратно 3, можно сформулировать так: «кратность числа 9 является достаточным условием кратности числа 3» или «кратность числа 3 является необходимым условием его кратности 9».

Как и любое высказывание, предложение А (х) Þ В (х) может быть истинным либо ложным. Но так как оно может быть сформулировано в виде «всякое А (х) есть В (х)», то его истинность устанавливается путем доказательства, а то, что оно ложно – с помощью контрпримера.

Рассмотрим два предиката: А (х): «число оканчивается нулем» и В (х): «число делится на 10». Из школьного курса математики известно, что если число оканчивается нулем, то оно делится на 10. Верно и обратное. В этом случае говорят, что предложения А (х) и В (х) равносильны.

Определение. Предикаты А (х) и В (х) равносильны, если из предиката А (х) следует предикат В (х), а из предиката В (х) следует предикат.

Для обозначения отношения равносильности используется знак Û.

Высказывание А (х) Û В (х) можно прочитать так: А (х) равносильно В (х), А (х) тогда и только тогда, когда В (х), А (х) необходимое и достаточное условие для В (х), В (х) необходимое и достаточное условие для А (х).

Заметим, что А (х) Û В (х) тогда и только тогда, когда ТА = ТВ.

Контрольные вопросы

1. Что значит предикат В (х) следует из предиката А (х)? В каком отношении находятся множества истинности этих предикатов?

2. В каком случае предикат А (х) будет являться необходимым условием для предиката В (х), достаточным условием для В (х)?

3. В каком случае предикаты А (х) и В (х) будут равносильны?

 

 

Теорема – это высказывание, истинность которого устанавливается посредством рассуждения (доказательства).

С логической точки зрения теорема представляет собой высказывание вида А Þ В, где А и В – предикаты с одной или несколькими переменными. Предложение А называют условием теоремы, а предложение В – ее заключением.

Рассмотрим теорему: «Если натуральное число делится на 2 и на 3, то оно делится на 6». Условие теоремы: «число делится на 2 и на 3», заключение теоремы: «число делится на 6». Условие и заключение теоремы представляют собой предикаты, заданные на множестве Х натуральных чисел. Данное предложение истинно при всех х из множества Х, следовательно, запись теоремы будет следующей: (" х Î Х) А (х) Þ В (х).

Т.о. в записи теоремы можно выделить 3 части:

1) разъяснительную (" х Î Х) – в ней описываются множества объектов, о которых идет речь в теореме;

2) условие теоремы: предикат А (х), заданный на множестве Х;

3) заключение теоремы: предикат В (х), заданный на множестве Х.

Для всякой теоремы вида (" х Î Х) А (х) Þ В (х) можно сформулировать предложения:

обратное данному (" х Î Х) В (х) Þ А (х),

противоположное данному (" х Î Х) ,

обратное противоположное данному (" х Î Х) .

Заметим, что эти предложения не всегда является теоремами. Например, предложение, обратное для теоремы «если каждое слагаемое делится на данное число, то и сумма делится на данное число» будет ложным. Оно будет формулироваться так: «Если сумма делится на данное число, то и каждое слагаемое делится на данное число». Чтобы убедиться в том, что оно ложное, можно привести контрпример: 3 + 7 = 10. Сумма 10 делится на 5, но ни одно слагаемое на 5 не делится. Данные предложения будут теоремами только в том случае, если они истинны.

Пример. Рассмотрим предложение: «Если каждое слагаемое – четное число, то и сумма – четное число». В нашем примере предикат А (х): «каждое слагаемое – четное число», В (х): «сумма – четное число». Данное предложение является истинным, поэтому его можно назвать теоремой.

Построим обратное предложение: «Если сумма – четное число, то и каждое слагаемое – четное число». Оно ложное, т.к. можно привести контрпример 8 = 5 + 3.

Противоположное предложение: «Если хотя бы одно из слагаемых – нечетное число, то и сумма – нечетное число. Оно также ложно (можно воспользоваться тем же контрпримером).

Обратное противоположному предложение: «Если сумма – нечетное число, то хотя бы одно слагаемое – нечетное число». Оно истинно, поэтому оно также является теоремой.

 

Заметим, что прямое и обратное противоположному предложения всегда имеют одинаковые значения истинности, т.к. имеется равносильность (А Þ В) Û (В Þ А), называемая законом контрапозиции. Из этого предложения также следует, что предложения, обратное данному и противоположное данному также имеют одинаковые значения истинности. Поэтому, рассматривая их, достаточно доказать (или опровергнуть) какое-нибудь одно, тем самым будет доказано (или опровергнуто) другое.

Если для данное теоремы А (х) Þ В (х) существует обратная В (х) Þ А (х), то их можно соединить в одну А (х) Û В (х), в формулировке которой будут использоваться слова «необходимо и достаточно», «тогда и только тогда».

Заметим также, что если условие или заключение теоремы представляет собой конъюнкцию или дизъюнкцию, то, чтобы получить предложение, противоположное данному, нужно учитывать правила построения отрицания конъюнкции или дизъюнкции.

 

Контрольные вопросы

 

1. Какое утверждение называется теоремой?

2. Для теоремы вида А (х) Þ В (х) запишите обратное, противоположное, обратное противоположному предложения. В каком случае полученные предложения будут являться теоремами?


Глава 6. Математические понятия

§ 1. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, ромб имеет 4 угла, 4 стороны, противоположные стороны параллельны. Можно указать и другие свойства, например, диагональ АС расположена горизонтально.

Среди свойств различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Несущественные свойства – это такие свойства, отсутствие которых не влияет на существование объекта.

Существенные свойства: иметь 4 равных стороны, 4 угла.

 

Несущественные свойства: вершина В лежит напротив вершины D, диагональ АС расположена горизонтально.

 

Чтобы понимать, что представляет собой данный объект, надо знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте.

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином. Так, говоря о треугольнике, имеют в виду все геометрические фигуры, являющиеся треугольниками.

Любое понятие имеет объем и содержание.

Определение. Объем понятия – это множество всех объектов, обозначаемых одним термином.

Определение. Содержание понятия – это множество всех существенных свойств объекта, отраженных в этом понятии.

Пример. Рассмотрим понятие «параллелограмм». Объем понятия – это множество различных параллелограммов (в том числе и ромбов, прямоугольников, квадратов). В содержание понятия входят такие свойства параллелограммов, как «иметь 4 стороны», «иметь параллельные противоположные стороны», «иметь равные противоположные углы» и т.д.

Между объемом и содержанием понятия существует такая связь: чем «больше» объем понятия, тем «меньше» его содержание и наоборот. Например, объем понятия «ромб» является частью понятия «параллелограмм», а в содержании понятия «ромб» содержится больше свойств, чем в содержании понятия «параллелограмм». Например, в содержании понятия «ромб» есть свойство «все стороны равны», которого нет в содержании понятия «параллелограмм».

Отношения между понятиями тесно связаны с отношениями между их объемами.

Условимся понятия обозначать строчными буквами а, b, с, d,…, а их объемы соответственно А, В, С, D,….

Если объемы понятий а и b не пересекаются, т.е. А Ç В = Æ, то говорят, что понятия а и b несовместимы. Примерами несовместимых понятий являются понятия трапеции и треугольника.

Если объемы понятий а и b пересекаются, т.е. А Ç В ¹ Æ, то говорят, что понятия а и b совместимы. Пример – прямоугольник и ромб.

Если объемы понятий а и b совпадают, т.е. А = В, то говорят, что понятия а и b тождественны. Пример – квадрат и ромб с прямым углом.

Если объем понятия а является собственным подмножеством объема понятия b, т.е. А Ì В, А ¹ В, то говорят, что:

а) понятие а является видовым по отношению к понятию b, понятие b – родовым по отношению к понятию а;

б) понятие а уже, чем понятие b, понятие b шире, чем понятие а;

в) понятие а есть частный случай понятия b, а понятие b – обобщение понятия а.

Пример: понятие «квадрат» – видовое по отношению к понятию «прямоугольник», а понятие «прямоугольник» – родовое по отношению к понятию «квадрат».

Остановимся подробнее на последнем отношении.

1) Понятие рода и вида относительны. Одно и то же понятие может быть видовым по отношению к одному понятию и родовым по отношению к другому. Например, понятие «прямоугольник» является родовым по отношению к понятию «квадрат» и видовым по отношению к понятию «параллелограмм».

2) Для данного понятия часто можно указать несколько родовых понятий, среди которых можно указать ближайшее. Например, родовыми для понятия «квадрат» будут понятия «прямоугольник», «параллелограмм», «четырехугольник». Ближайшим среди них будет понятие «прямоугольник».

3) Видовое понятие обладает всеми свойствами родового понятия. Например, понятие «ромб» является видовым по отношению к понятию «параллелограмм»; ромбы обладают всеми свойствами, присущими параллелограммам.

Рассмотрим отношения между понятиями «отрезок» и «прямая». Объемы этих понятий не пересекаются, т.к. ни один отрезок нельзя назвать прямой и наоборот. Об этих понятиях можно сказать, что они находятся в отношении целого и части: отрезок – часть прямой, а не ее вид. Заметим, что часть не всегда обладает свойством целого. Прямая бесконечна, а отрезок – нет.

 

 

<== предыдущая лекция | следующая лекция ==>
Высказывания с кванторами и их отрицания | Определение понятия. Требования к определению понятия
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1590; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.