Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Броматометрия

Л

+ + 4

Знаки тригонометрических функций в зависимости от координатной четверти

Базовые тригонометрические формулы

Решение тригонометрических уравнений сводится к приведению их к простейшему виду.

Тригонометрические уравнения

Простейший вид приведен ниже в таблице.

 



 

Mn + 3*-" = Mn

(восстановление)

2+

Из электронных уравнений видно, что Мп присоединяет 3 электрона, а FeZT — 2. Следовательно, число эквивалентности z (KMnO4) = 3, FeSO4— 1. Молярные массы эквивалентов соответственно составят; М (1/3 КМпО4) = М (КМпО4): 3 = 52,68 г/моль; M(l/1 FeSO4) = M (FeSO4) = 151,91 г/моль.

Окисление перманганатом калия в щелочной среде. Например:

FeSO4+ KMnO4 +3KOH= Fe (OH)3+ K2 MnO4 + K2SO4

Fe — e~ = Fc

Mri -f- e" — Mn

(окиеление)

t (восстановление)

Согласно электронному уравнению молярные массы эквивалентов FeSO4 и КМпО4 равны их молярным массам, так как отдано и присоединено молекулами восстановителя и окислителя по одному электрону: z (FeSO4) = z (KMnO4)=l.

Иодометрия,

Иодометрия — метод титриметрического анализа, основанный на определении количества иода, которое затрачивается на окисление восстановителей или выделяется при взаимодействии окислителя с раствором иодида калия. Основная реакция метода описывается следующим уравнением:

12 + 2е~ <-* 2Г.

Эта реакция обратима. В зависимости от условий она может протекать в прямом или обратном направлениях. Иод представляет собой окислитель средней силы: стандартный потенциал системы равен 0,54 В. Поэтому сильные восстановители легко окисляются свободным иодом. Примером может быть окисление иодом ионов олова (II):

Sn2+ + I2=Sn4+ + 2Г.

Другие неорганические ионы в низших степенях окисления также можно определять посредством титрования раствором иода, например мышьяк(Ш), ванадий (IV), ртуть (Г). Таким способом определяют кислоты-восстановители, например сероводород, сернистую кислоту, тиосульфат и др. Иод окисляет также многие органические вещества: соединения, содержащие альдегидные группы, азот-, и серосодержащие соединения, оксисоединения и

Сильные окислители способны, наоборот, выделять иод из растворов иодидов. По этому типу происходит взаимодействие между иодидом калия и бихроматом или перманганатом калия, солями церия(1У), ванадия(У), железа(Ш), меди(П), органическими пероксидами и многими другими окислителями. Так, реакция между иодидом калия и ионами железа (III)

2Fe3+ + 2Г = 2Fe2+ + 12

является основой иодом етрического определения железа. Таким образом, эту реакцию можно использовать для определения и восстановителей, и окислителей. В первом случае применяют для титрования рабочий раствор иода, во втором — рабочий раствор тиосульфата натрия; последний реагирует с иодом в соответствии с уравнением

2Na2S2O3 + h = Na2S4O6 + 2NaI.

Независимость двух основных реакций метода от кислотности раствора представляет важную особенность иодометрических определений. Окислительно-восстановительный потенциал системы 12/2Г не зависит от рН раствора, поэтому иодометрические определения можно проводить в

широком интервале кислотности раствора (рН = 2—10). Это дает возможность подбирать в каждом отдельном случае самые благоприятные для определения окислителей или восстановителей условия кислотности и применять иодометрический метод для определения значительно более широкого круга объектов, чем в других методах титриметрического анализа. Иллюстрацией может быть определение мышьяка. Реакция окисления мышьяка (III) до мышьяка (V) проходит по уравнению:

HAsO2 + 2Н2О <-► H3AsO4 + 2Н+ + 2е\

Из уравнения видно, что во время реакции выделяются ионы водорода, следовательно, мышьяк окисляется легче в щелочном или в слабо щелочном растворе. Применять для титрования мышьяка такие окислители, как перманганат или бихромат калия, в этом случае неудобно. Перманганат восстанавливается до марганца (II) легче в сильно кислой среде; в слабо щелочном растворе окислительный потенциал перманганата снижается, вследствие чего реакция между перманганатом и мышьяком происходит очень медленно и не стехиометрически. Продуктами реакции являются соединения марганца (II) и марганца (IV), соотношение между количествами которых обычно не постоянно и зависит от условий определения. В то же время иодометрическое определение мышьяка проходит без всяких затруднений. Окислительный потенциал системы 12/2Г не изменяется под влиянием кислотности; рН раствора можно устанавливать только в зависимости от специфических условий протекания реакции.

Эта особенность иодометрического метода обусловливает его широкое применение при определении самых разнообразных неорганических и органических соединений.

Другая особенность иодометрии заключается в высокой точности установления точки эквивалентности, что связано с наличием чувствительного специфического индикатора. В качестве индикатора применяют раствор крахмала, который образует с наименьшими количествами иода окрашенное в интенсивно синий цвет адсорбционное соединение. Реакция отличается высокой чувствительностью — уже 0,00001 М растворы иода окрашиваются в присутствии крахмала в синий цвет. Точку эквивалентности можно также установить по желтой окраске свободного ио­да; повысить чувствительность в этом случае можно путем экстракции иода в слой органического растворителя (хлороформа, тетрахлорида углерода и др.). Таким способом можно перевести наименьшие количества иода из большого объема водного раствора в небольшой объем органического растворителя и значительно усилить интенсивность желтого окрашивания.

Существует две основных причины погрешностей при иодометрических определениях. Первая обусловлена летучестью иода и его растворов. Поэтому все работы, связанные с выделением иода, целесообразно проводить в закрытых склянках или колбах. Вследствие летучести иода и его малой растворимости в воде для титрования применяют растворы иода в концентрированном растворе иодида калия. При определении окислителей создают в растворе большой избыток иодида калия, чтобы перевести

выделяющийся при реакции твердый иод в раствор и уменьшить его летучесть. Вторая причина погрешностей — окисление растворов иодида калия кислородом воздуха.

Бромат калия в кислом растворе проявляет достаточно сильные окислительные свойства. Электронно-ионную реакцию восстановления бромат-ионов можно представить следующим уравнением:

ВЮз' + 6YT + бе" = Вг" + ЗН2О, Ео = 1,46 В.

Однако в кислом растворе равновесие между ионами бромата и бромида невозможно, так как они взаимодействуют между собой с образованием сво­бодного брома:

ВгОз'+бН*" + 5Вг" = ЗВг2 + ЗН2О.

Таким образом, окислителем по существу является свободный бром, потенциал которого значительно ниже, чем потенциал бромата:

2Вг" = 2е" + Вг2, Е0=1,07В.

Эквивалент бромата калия, как это видно из уравнений, равен одной шестой части молекулярной массы.

Бромат калия легко очистить от примесей перекристаллизацией из водного раствора. Перекристаллизованную соль высушивают в сушильном шкафу при 100 — 150°С и сохраняют в закрытой склянке. Рабочий раствор КВгО3 можно готовить непосредственно из навески высушенной соли. Иногда к рабочему раствору прибавляют при его приготовлении избыток бромида калия; в этом случае при титровании таким бромид-броматным раствором в кислой среде сразу выделяется свободный бром, который реагирует с находящимся в растворе восстановителем.

Рабочий раствор бромата калия обычно применяют в следующих случаях.

1. Для прямого титрования неорганических ионов, находящихся в низшей степени окисления. Известны методы определения трехвалентного мышьяка, пероксида водорода, олова (II), меди(1); таллия (I), железа(П), урана(ГУ), ванадия(П) и др. Наиболее распространен броматометрический метод титрования сурьмы (III):

КВЮз + 3SbCl3 + 6HC1 = KBr + 3SbCl5 + ЗН2О.

Титрование обычно проводят в растворе хлороводородной кислоты.

2. Для прямого определения некоторых органических веществ. Примером может служить титрование аскорбиновой кислоты (витамина С) в различных медицинских препаратах.

>э" + 5Br" + 6Н* ■

6НВг + ЗН,0

Известны и другие примеры. Так, тиомочевина количественно окисляется броматом по реакции:

3CS(NH2)2 + 4НВгО3 + ЗН2О = 3CO(NH2)2 + 3H2SO4 + 4HBr.

Продуктом реакции является мочевина.

3. Для определения некоторых ароматических органических соединений и косвенного определения многих неорганических ионов по реакциям замещения.

Фенолы и его производные титруются раствором бромид-бромата с образованием соответствующих бромзамещенны.х соединений. В случае фенола продуктом реакции является трибромфенол:

С6Н5ОН + ВгОз" + 5Br" + 6¥t = СбН2Вг30Н + ЗНВг + ЗН2О.

Здесь происходит реакция бромирования фенола. Аналогичные реакции бромирования лежат в основе определения многих других органических соединений ароматического ряда, например салициловой кислоты, крезолов, динитрофенолов, резорцина, Р-нафтола, анилина, антипирина и др.

Для косвенного определения металлов большое значение имеет реакция бромата калия с 8-гидроксихинолином. В кислой среде 8-гидроксихинолин реагирует с бромид-броматной смесью по уравнению:

он

<== предыдущая лекция | следующая лекция ==>
Уравнения, содержащие знак модуля | Методы предварительного восстановления
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1501; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.