КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекции по геологии / гидрогеологии | Лекции по геологии / гидрогеологии
Вопросы и задания для самопроверки 1. Какой метод получения векторных цифровых карт по картам на твердом носителе в настоящее время является наиболее популярным? 2. Какие сложности могут возникнуть при сканировании бумажной карты? 3. Назовите варианты повышения качества векторизации. Дайте их сравнительный анализ. 4. В чем преимущество использования GPS-приемников при получении данных для векторной ГИС в отличие от использования технологии получения таких данных по исходным картам на твердом носителе? 5. В чем суть иерархического способа сбора пространственных данных? 6. Докажите, почему четырех уровней детализации при использовании ДЗЗ достаточно для получения карт практически значимых масштабов. 7. В каких случаях можно считать, что проведение съемок на местности с помощью GPS-приемников позволяет получать однородный картографический материал? 8. С появлением российской системы ГЛОНАСС каким потребительским навигаторам следует отдавать предпочтение? 9. Проведите с использованием самых современных материалов сравнительный анализ систем GPS и ГЛОНАСС, а также спутниковых систем навигации, готовящихся к внедрению. 10. Почему, по вашему мнению, недостаточно двух спутниковых навигационных систем GPS и ГЛОНАСС и готовятся к эксплуатации другие подобные системы?
[1] В картографии принято обозначать через x вертикальную ось координат, а через y – горизонтальную ось координат. [2] Здесь и далее для краткости упоминается только модель Земли в виде эллипсоида, хотя аналогичные определения имеют место и для геоида. Лекции по геологии и гидрогеологии. Введение. Основы геологии Лекция 1. Общее о геологии Инженерная геология – наука, изучающая геологические процессы верхних слоев земной коры и физико-механические свойства горных пород в связи с инженерно-строительной деятельностью человека. Основным объектом изучения геологии является литосфера и земная кора. Основоположником геологии является М. В. Ломоносов, В. М Севергин. Мы с вами будем изучать самый значительный для строительства раздел геологии "Инженерная геология".
Лекция 2. Геологическое строение Земли 2.1 Происхождение Земли 2.2 Форма и строение Земли Форма Земли близка к шару, но сплюснута у полюсов. Такую форму называют сфероидом, но в связи с тем, что земная поверхность имеет впадины и горы, её назвали геоидом. Наша планета имеет концентрическое строение и состоит из ядра и оболочек. На поверхности земли находится водяная оболочка – гидросфера и атмосфера. Ядро земли (см. рисунок 1) предположительно имеет силикатный состав с большим содержанием железа. Радиус ядра примерно 3500 км, температура ядра 2000…25000. Промежуточная оболочка – границей является глубина 2900 км (см. рисунок 2). Состоит в основном из кремния, железа, магния. За промежуточной оболочкой, залегает перидотитовая, состоящая из силикатных пород, с преобладанием кремния и магния. Её верхняя часть содержит расплавленные массы. Здесь рождаются сейсмические явления. Наружная часть земли глубиной до 50…70 км, называется литосферой, она является источником минерального сырья. Гидросфера – водная оболочка покрывает до 70% земной поверхности. Наибольшая глубина 11521 метров (Марианская впадина). Температура воды зависит от широты и глубины местности. Самая высокая +35,60 в Персидском заливе, самая низкая -2,80 в Ледовитом океане.
Изменения в первой зоне определяются климатическими условиями. Общая мощность первой зоны составляет 12-15м. В зимний период возникает подзона, где температура опускается ниже нуля градуса. По мере углубления в недра влияние сезонных колебаний несущественно и на глубине 15…40 метров находится зона постоянных температур, которая примерно равна 15,5 – 13,60. По мере возрастания глубины, определяется 3-тья зона. В этой зоне на каждые 100 метров глубины температура возрастает на три градуса, в сейсмических районах увеличение значительно. Такая закономерность просматривается лишь до определенной глубины, далее изменения изучены недостаточно. Рисунок 3 – температурные зоны земли
3.1 Условия образования минералов 3.2 Строение и свойства минералов
4.1 Определение возраста горных пород. В результате изучения строения земной коры и истории развития жизни появилась возможность разделить всю геологическую историю на ряд отрезков времени и составить по данным абсолютного и относительного возраста шкалу геологического времени – геохронологическую шкалу. Геологическая история развития Земли началась с архейской эры. Общий возраст Земли определяется в 5…5.5 млрд. лет.
Самый длительный отрезок времени – эон. Толщину, образованную за это время из слоев пород, называют эонотемой. Самый короткий отрезов – век. Толщу, образующуюся в течение века, называют ярусом. Каждому отрезку времени геологической истории соответствует толща пород, которая образовалась на протяжении этого отрезка времени. Геологическая история делится на 6 эр, соответственно, толща пород земной коры разделяется на шесть групп (см. таблицу 2). Каждая эра делится на периоды (системы пород), период – на эпохи (отделы пород), эпохи – на века (ярусы пород). Каждый отрезок времени и соответствующая ему толща пород получила свое название и индекс.
4.2 Абсолютный, относительный показатель горных пород Абсолютный возраст выражается в годах, т.е. определяется, сколько лет прошло с момента образования породы. Для этого применяют радиоактивные методы. С их помощью устанавливают возраст в миллионах лет. Люминесцентные методы абсолютной датировки основаны на способности некоторых широко распространенных минералов (например, кварца и полевого шпата) накапливать в себе энергию ионизирующего излучения, а затем, при определенных условиях, быстро отдавать ее в виде света. Ионизирующее излучение не только прилетает к нам из космоса, но и генерируется горными породами в ходе распада радиоактивных элементов. Под воздействием радиации некоторые электроны кристалла переходят в особое возбужденное состояние. Чем больше в кристалле трещин и других дефектов, тем большее число электронов способно к такой трансформации. Пока кристалл (например, песчинка) спокойно лежит в темном, прохладном месте (например, под слоем других песчинок), число «перевозбужденных» электронов в нем постепенно растет, энергия копится. Если такой кристалл подвергнуть определенной стимуляции (нагреть до 500 градусов или даже просто осветить), он стремительно отдает накопленную энергию в виде света. Возбужденные электроны при этом успокаиваются и возвращаются на положенные орбиты, и «люминесцентный хронометр» обнуляется. Измерив количество излученного света, можно определить, как долго кристаллу дали спокойно пролежать в вышеупомянутом темном, прохладном месте после того, как он в последний раз подвергался аналогичной стимуляции (попадал на свет или нагревался). На этом и основаны методы люминесцентной датировки, соответственно: термолюминесцентный и оптико-люминесцентный (метод оптически стимулированной люминесценции). Впервые термолюминесцентный метод начали применять археологи в середине XX века для определения возраста обожженной керамики (это очень удобно, поскольку во время обжига люминесцентный хронометр гарантированно обнуляется). Метод электронно-парамагнитного или электронно-спинового резонанса - тоже основан на изменениях, постепенно накапливающихся в кристалле под воздействием радиации. Только в данном случае речь идет не о количестве «возбужденных» электронов, способных «успокаиваться» с излучением света, а о количестве электронов с изменившимся спином. Чтобы определить число таких электронов физики используют резонансные методы, то есть подвергают колебательную систему (в данном случае кристалл) периодическому внешнему воздействию (например, помещают в переменное магнитное поле) и наблюдают отклик, который дает система при сближении частоты внешнего воздействия с одной из частот собственных колебаний системы. Существует еще целый ряд физико-химических методов абсолютной датировки, имеющих ограниченную область применения. В качестве примера можно привести аминокислотный метод, основанный на том, что «левые» аминокислоты, из которых построены белки всех живых организмов, после смерти постепенно рацемизируются, то есть превращаются в смесь «правых» и «левых» форм. Метод применим только к образцам очень хорошей сохранности, в которых сохранилось достаточное количество первичного органического вещества. Другая сложность заключается в том, что скорость рацемизации напрямую зависит от температуры. Поэтому, например, для образцов из умеренных широт метод имеет разрешающую способность порядка 20-30 тыс. лет, но применим лишь для молодых отложений (не старше 2 млн. лет); в полярных районах метод позволяет датировать более старые образцы (до 5-6 млн. лет), но с меньшей точностью (ошибка порядка 100 тыс. лет). Дендрохронологический метод - датирование по древесным кольцам. Этот метод позволяет датировать только самые молодые отложения (возрастом до 5–8 тысяч лет), зато с очень высокой точностью, вплоть до одного года. Нужно лишь, чтобы в раскопе обнаружилось достаточное количество древесины. В стволах большинства деревьев образуются годовые кольца, ширина которых колеблется в зависимости от погодных условий соответствующего года. Характерные «спектры» широких и узких колец примерно одинаковы у всех деревьев данной местности, растущих одновременно. Специалисты по дендрохронологии составляют сводные дендрохронологические шкалы, протягивающиеся от сегодняшнего дня в прошлое. Очень помогают в этом деревья–долгожители. К сожалению, погода в разных районах Земли сильно различается. Поэтому для каждого региона приходится составлять отдельные дендрохронологические шкалы. Дендрохронологический метод применим только для районов с сильными сезонными колебаниями климата (температуры или количества осадков) – в противном случае четких годовых колец не образуется. Кроме того, состав почвы должен способствовать хорошей сохранности древесины, а изучаемые археологические культуры – широко использовать дерево в хозяйстве. Метод молекулярных часов. Согласно «правилу молекулярных часов», нейтральные мутации накапливаются в геноме с примерно постоянной скоростью, если нет каких-то особых причин, заставляющих этот процесс ускоряться или замедляться. Скорость накопления мутаций варьируется у разных групп, но все эти различия в принципе можно учесть. Метод молекулярных часов крайне неточен, потому что скорость накопления мутаций может варьировать не только в зависимости от группы организмов, но и от многих других факторов. Поэтому на основе данного метода можно давать лишь весьма приблизительные оценки времени расхождения эволюционных линий. Неточность большинства методов абсолютной геохронологии вовсе не дает оснований напрочь отрицать достоверность абсолютных датировок в палеонтологии, эволюционной биологии и археологии. Главная сила этих методов в том, что их много. И в подавляющем большинстве случаев они все-таки дают сходные результаты, которые к тому же хорошо согласуются с данными относительной геохронологии. Именно поэтому в хороших научных исследованиях возраст объектов сейчас стараются определять при помощи нескольких независимых методов. Относительный возраст позволяет определять возраст пород относительно друг друга, т. е. Устанавливать, какие породы древнее, какие моложе. Для определения относительного возраста используют два метода: стратиграфический и палеонтологический. Стратиграфический метод применяется для толщ с ненарушенным горизонтальным залеганием слоев. При этом считают, что нижележащие слои являются более древними, чем вышележащие. Этот метод мало применим при залегании слоев в виде складок. Палеонтологический метод позволяет определить возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на различных участках. В основу метода положена история органической жизни Земли. Животные и растительные организмы развивались постепенно, последовательно. Остатки вымерших организмов захоронились в тех осадках, которые накапливались в тот отрезок времени, когда они жили.
4.3 Сейсмическая активность и условия залегания горных пород в сфере взаимодействий сооружений с геологической средой Моноклиналь – является самой простой формой нарушения первоначального залегания пород и выражается в общем наклоне слоев по отношению к горизонту. Складка представляет собой один сплошной перегиб слоев, возникающих в результате воздействия на породы тангенциальных тектонических сил. Выделяют два главных типа: антиклиналь - складка, обращенная своей вершиной вверх; и синклиналь - вершина, обращенная вниз. Бока складок называют крыльями, а вершину - замком. Флексура представляет собой коленоподобную складку, образовавшуюся при смещении одной части толщи пород относительно другой без разрыва сплошности. При изучении геологии строительных площадок необходимо установить пространственное положение слоев и отразить это на геологических картах. Лекция 5. Классификация горных пород
Горные породы представляют собой плотные или рыхлые, слагающие земную кору агрегаты тех или иных минералов, а также обломков других пород. Каждая горная порода имеет минералогический состав, свою структуру и текстуру. Структура горных пород определяется особенностями внутреннего строения, формой и размерами слагающих их элементов (минералов и цемента) и характером их взаимной связи. Текстура горных пород определяется ее внешним обликом (слоистость, массивность и т.д.), обусловленным особенностями слагающих пород частиц. Горные породы по условиям происхождения и образования (генезису) делятся на: магматические, осадочные и метаморфические.
Магматические породы образуются из застывшей магмы. Расплавленная магма, застывшая в недрах, образовывает глубинные породы, поток лавы излившийся на поверхность земли называется излившейся, Глубинные магматические породы образуются в условиях высокого давления, медленного и равномерного остывания. При этом породы характеризуются плотной полнокристаллической структурой. Излившиеся магматические породы образуются под низким давлением и температурой, при быстрой отдаче тепла и газовых компонентов. При этом породы характеризуются наличием аморфного стекла и пористой структурой. Структура и текстура магматических пород зависит от внутреннего строения. По происхождению, условиям образования и залегания магматические горные породы подразделяются на: интрузивные (глубинные), эффузивные (излившиеся) и жильные. Интрузивные породы образуются при силовом внедрении и остывании магмы в толще отложений горных пород земной коры без их выхода на поверхность земли. Жильные образования связаны с заполнением магмой трещин, образующихся обычно в толще осадочных пород при внедрении магмы. Жилы подразделяются на пластовые и секущие. Эффузивные породы образуются при излиянии с последующим остыванием и затвердеванием магмы уже не в тоще пород земной коры, а на поверхности земли. Различают структуру: 1. зернистую (полнокристаллическую); 2. полукристаллическую; 3. стекловатую. По величине кристаллов породы делятся на: крупнозернистые – более 5 мм; среднезернистые – 5…1 мм.; мелкозернистые – менее 1 мм (см.рисунок 3). Текстура характеризует пространственное расположение составных частей. Различают: 1. массивную текстуру (плотное расположение кристаллов);
Рисунок 4 - флазерное габрро
5.4 Осадочные горные породы Конгломерат и брекчии – представляют собой сцементированную гальку и щебень; ρ = 1500…2900 кг/м3. Их применяют при изготовлении кремнеземистого цемента, как строительный камень, облицовочный материал. Органогенные породы отличаются значительной пористостью и сжимаемостью. К органогенным породам относят различные карбонатные и кремнистые породы.
Песок. Мелкообломочная порода (см. рисунок 9). Более 50 % массы составляют обломки размером мельче 2 мм. По зерновому составу и размеру зерен выделяют гравелистые, крупные, средней крупности, мелкие и пылеватые разновидности; по относительной величине зерен - однородные и неоднородные пески. Минеральный состав песков разнообразный: наиболее распространены кварцевые (до 95 % кварца), реже встречаются аркозовые (преобладают кварц и палевой шпат), глауконитовые (кварц 20...40 %, глауконит 60...80 %), железистые (зерна кварца покрыты корочками лимонита), полиминеральные. В песках встречаются слюды, роговая обманка, авгит, обломки карбонатных пород и вулканического стекла, иногда гипса и галита (засоленные пески). Цвет зависит от минерального состава: желтый, зеленый, бурый, оранжевый, иногда черный. Свойства песков зависят преимущественно от зернового состава. По коэффициенту пористости пески подразделяют на рыхлые, средней плотности и плотные. Песок – нескальный несвязный грунт. Вулканический песок, вулканический пепел. Мелкообломочные рыхлые породы. Преобладают частицы распыленной и затвердевшей лавы, обломки минералов и горных пород размером 1...2 мм (песок) или менее 1 мм (пепел) Вулканический пепел может быть рыхлой или слабосцементированной породой. Цвет серый, бурый, черный в зависимости от минерального состава изверженной в атмосферу массы. Лёсс, лёссовидный суглинок, лёссовидная супесь (алевриты). Лёсс – просадочный грунт. При замачивании сокращается в объеме и проседает от собственного веса на 1…7 см на 1 м толщи. Лёсс содержит более 50 % пылеватых и до 30 % глинистых частиц, имеет светло-желтую или палево-желтую окраску, вертикальные макропоры. Строение макропористое, землистое, слоистость отсутствует Минеральный состав: преимущественно инертные минералы – кварц, полевые шпаты, слюды глинистые - каолинит, реже монтмориллонит, а также растворимые -гипс и кальцит. Легко размывается водой, вскипает при действии 10 %-ной соляной кислоты, в сухом состоянии пальцами растирается в порошок, при увлажнении дает малопластичную массу, не разбухает. Лёссовидные супеси и суглинки содержат менее 50 % пылеватых частиц. Обладают свойствами лёсса, но по мере увеличения количества глинистых частиц уменьшается макропористость и размываемость, увеличивается пластичность, подрастает доля глинистых минералов, окраска становится более темной, иногда появляется слоистость. Лёссы и лессовидные отложения – нескальные грунты. Глина, суглинок, супесь (пелиты). Пелиты – связные породы – обладают свойством пластичности и содержат глинистых частиц: более 30 % -глины, 10...30 % - суглинки и З...10%-супеси. Минеральный состав: каолинит, монтмориллонит, кварц, слюды, полевые шпаты. Цвет белый, темно-серый и черный, желто-бурый, буро-красный (если присутствуют оксиды железа и марганца), голубовато-зеленый (при наличии глауконита и хлорита) и др. Структура микрокристаллическая, землистая, текстура микропористая, часто слоистая. При увлажнении набухают, делаются пластичными, при высыхании дают усадку и переходят в твердое состояние. Практически глину, суглинок и супесь различают по числу пластичности. Грунты нескальные, связные, общее название грунтов – глинистые. Конгломерат, туфоконгломерат. Сцементированная крупнообломочная порода, содержащая окатанные обломки с преобладающим размером более 10 мм. Структура обломочная, разнозернистая, текстура беспорядочная. Минеральный состав обломков зависит от состава исходной породы, как правило, это обломки прочных магматических, метаморфических или осадочных пород. Природными цементами могут быть: кальцит (вскипает при действии 10 %-ной соляной кислоты), гипс (царапается ногтем), глина (если подышать на породу, издает землистый запах, сравнительно легко размокает в воде), кварц, халцедон, опал, оксиды железа (придают породе ржаво-бурую окраску), битумы (придают породе черную или темно-бурую окраску). Твердые продукты извержения вулканов, сцементированные природными цементами, называются туфоконгломератами. Скальный грунт. Брекчия, туфобрекчия. Сцементированная крупнообломочная порода с преобладанием остроугольных обломков размером более 10 мм, скрепленных природным цементом. Структура угловато-обломочная, разнозернистая; текстура беспорядочная. Минеральный состав и состав природных цементов аналогичны конгломератам. Скальный грунт. Гравелит. Аналогичен конгломерату. Преобладают (более 50 %) окатанные обломки размером более 2мм. Скальный грунт. Туф вулканический. Твердые продукты вулканических извержений, сцементированные гидрохимическим переработанным мелкообломочным материалом. Строение обломочно-пористое: на фоне пористой массы разбросаны обломки различной величины, формы и цвета. Текстура беспорядочная. Выделяют крупнообломочные (преобладают обломки размером 3...5 мм), среднеобломочные (5...2 мм), мелкообломочные (2...0,5 мм) и тонкообломочные (менее 0,05 мм) разности. По минеральному составу различают липоритовые, трахитовые, базальтовые, реже дацитовые и фонолитовые туфы, в которых может содержаться до 10 % обломочного материала не вулканогенного происхождения. Окраска различная: розовая, серая, зеленая и др. Скальный грунт. Туфолава, лавовая брекчия. Твердые продукты вулканических извержений, сцементированные лавой (занимают промежуточное положение между лавой и туфом). Если преобладают обломки размером менее 10 мм -туфолава, более 10 мм - лавовая брекчия. Минеральный состав аналогичен туфам вулканическим. Текстура флюидальная или беспорядочная. Структура обломочная. Скальный грунт. Туффит. Твердые продукты вулканических извержений и примеси осадочного материала невулканогенного происхождения (10...50 %), сцементированные природными цементами. По размерам и минеральному составу вулканические обломки подразделяют так же, как туфы вулканические. По составу осадочного материала выделяют кремнистый, глинистый и карбонатный туффиты. Структура пористая. Текстура обломочная, часто слоистая. Скальный грунт. Песчаник. Сцементированный песок (см. рисунок 10). Цементирующими веществами могут быть кальцит, гипс, глина, кварц, халцедон, опал, водные оксиды железа, битумы и др. На ощупь грубый. Строение зернистое. Сложение плотное. Минеральный и зерновой составы аналогичны пескам. По относительной величине зерен различают равномерно- и разнозернистые песчаники, а по их преобладающему размеру грубо-, крупно-, средне- и мелкозернистые разности. Цвет и прочность зависят от минерального состава зерен и вида цемента. Скальные грунты различной прочности. Алевролит. Алевритовая пылеватая сцементированная порода. Минеральный состав аналогичен алевритам. Цвет различный, чаще серый до черного, бурый, красноватый. Структура пылевато-глинистая. Текстура массивная, тонкослоистая, в воде размокает медленно, при этом не становится пластичным. Скальный грунт. Аргиллит. Глинистая сцементированная порода Минеральный состав аналогичен пелитам. Цвет различный Структура глинистая. Текстура плотная, тонкослоистая или тонкоплитчатая. В воде медленно размокает, не приобретает пластичности. При увлажнении иногда издает землистый запах. Скальный грунт. Известняк, известняк-ракушечник, туф известковый, травертин. Породы, состоящие главным образом из кальцита или кальцитовых скелетных остатков организмов, иногда с примесью (до 20 %) глинистых, пылеватых или песчаных частиц. Структура обломочная, текстура пористая, в деталях зависят от происхождения (органогенное, химическое, смешанное). Выделяют крупно-, средне-, мелко-, микро-, неравномернозернистые, афанитовые, землистые, оолитовые и другие разновидности. Чистые известняки белые, желтоватые; различные примеси окрашивают их в серый, розовый, черный и другие цвета. Отличительная особенность: известняки бурно вскипают от капли 5 %-ной соляной кислоты, причем на их поверхности после реакции не остается грязного пятна. Часть органогенных известняков состоит целиком из хорошо различимых раковин моллюсков (или их обломков), их называют известняками-ракушечниками. Структура известняков химического происхождения обычно микрозернистая (из мельчайших зернышек кальцита) или оолитовая (из шаровидных размером 1...5 мм зерен кальцита - оолитов). Пористый или ячеистый известняк, образованный в результате отложения кальцита из источников, получил название туф известковый, а его плотная разновидность-травертин. Скальные грунты. Растворимы в воде. Мел. Обычно белая, сцементированная порода, состоящая из 60...70 % кальцитовых остатков морских планктонных водорослей и 30...40 % тонкозернистого порошкообразного кальцита. Содержание примесей не более 1 %. Отличительные особенности: бурно вскипает при действии 5 %-ной соляной кислоты; имеет белый, реже желтоватый или зеленоватый цвет: пачкает руки, пишет. Скальный грунт. Доломит. Состоит из минерала доломит (75 % и более). Строение плотное, структура скрытокристаллическая (см. рисунок 11). Цвет белый, желтоватый, серый, зеленоватый, красноватый. С 10 %-ной соляной кислотой реагирует только в порошке или при нагревании. Скальный грунт. Мергель. Имеет смешанный карбонатно-глинистый состав. Состоит из 50…70 % кальцита (реже доломита) и 25…50 % глинистых частиц Структура землистая, текстура массивная. Цвет белый, серый, розовый, желтоватый, красноватый, зеленоватый, пестрый. Вскипает при действии 10 %-ной соляной кислоты. Капля кислоты после реакции оставляет на поверхности породы грязное пятно (характерное отличие от известняка). Скальный грунт Диатомит. Представляет собой скопление микроскопических скелетов диатомовых водорослей, состоящих из водного кремнезема (опала). Строение землистое рыхлое или сцементированное. Цвет белый, желтоватый, светло-серый. Текстура пористая. Отличительные особенности: легкий, жадно впитывает воду, прилипает к влажному пальцу, растирается пальцами в тончайшую пудру, не вскипает при действии соляной кислоты. Трепел. Состоит из мельчайших зернышек опала химического происхождения (отличие от диатомита), видимых только под микроскопом. Внешне похож на диатомит. Опока. Сложена опалом с примесью глинистых минералов и скелетных остатков микроорганизмов. Очень легкая порода. Цвет серый, голубоватый, иногда черный. Часто окраска пятнистая. Отличительные особенности: при ударе опока колется со звенящим звуком на мелкие остроугольные обломки, обладающие раковистым изломом; не вскипает при действии соляной кислоты. Похожа на диатомит и трепел, но отличается большей прочностью. Яшма. Сложена скрытокристаллическим и аморфным кремнеземом (кварц, халцедон, опал) (см. рисунок 12) Часто содержит остатки микроскопически мелких животных – радиолярий и примеси глинозема, извести, соединений металлов. Цвет разнообразный (красный, зеленый, желтый, коричневый, пестрый и др.). Отличительные особенности: высокая прочность, разноцветная полосчатая текстура, раковистый излом. 5.6 Метаморфические горные породы Метаморфические породы классифицируются: по минеральному составу, по структуре, по текстуре. По форме зерен различают гранобластовую структуру (зерна изометрической формы), лепидобластовую (зерна в форме листочков, чешуек), порфиробластовую (с одинаковыми по форме зернами). По размерам зерен выделяют крупнозернистые, среднезернистые и мелкозернистые структуры. Кварцит – плотная горная порода, очень твердая (см. рисунок 13). Окрас розовый, серый, желтый. Состоит из кварца с примесью слюды. Структура зернистая, ρ = 2800-3000 кг/м³. Применяется как строительный и облицовочный камень. Мрамор – кристаллическая порода, кальций с примесью доломита (см. рисунок 14). Структура зернистая. Окраска белая, розовая, серая, голубая; ρ =2600…2800 кг/м3. Легко выветривается под действием воды, хорошо поддается обработке. Применяется как облицовочный материал. Гнейс – содержит кварц, полевой шпат, слюду, роговую обманку (см. рисунок 15). Структура кристаллическая, текстура полосчатая. Окрас светло-серый, зеленоватый, ρ=2400…2800 кг/м3. Наиболее прочен в перпендикулярном к полосам направлении. Используется как строительный камень. Сланцы – образуются в результате метаморфизма различных пород. По сланцеватости породы сравнительно легко раскалываются. Сланцы называют по преобладающему в них минералу: слюдяные, хлоритовые. Применяется как теплоизоляционный материал, для изготовления кровли. 5.7 Главнейшие метаморфические породы Филлит, кровельный сланец. Текстура тонкосланцеватая. Состоит из кварца, иногда хлорита, биотита, полевых шпатов, кальцита (см. рисунок 16). Цвет зеленый, серый, красноватый, бурый, черный, фиолетовый. Структура микрозернистая (микрочешуйчатая) полнокристаллическая. Легко раскалывается на плитки со слабым шелковистым блеском по плоскостям сланцеватости. Прочность средняя. Слюдяной сланец. Текстура сланцеватая (см. рисунок 17). Состоит преимущественно из слюд (мусковит, биотит), кварца, иногда граната, графита. Цвет белый, бурый, черный. Структура средне- или крупнокристаллическая (чешуйчатая). Легко расщепляется на тонкие пластинки с шелковистым блеском по плоскостям спайности. Блеск сильный. Прочность средняя. Гнейс. Текстура полосчатая, реже очковая. Состоит из кварца, полевых шпатов, биотита, роговой обманки, иногда пироксена, граната, графита и др. Цвет серый, желтоватый, черный и др. Характерно чередование светло-серых или розовых (кварц, полевые шпаты) и темных полос (биотит, роговая обманка). В очковых включениях наблюдаются крупные кристаллы полевых шпатов среди более мелкозернистой массы. Структура зернисто-кристаллическая (средне- и крупнозернистая). По минеральному составу и свойствам близок к граниту, отличается от него текстурой. Переходные разности называются гнейсогранитами или гранитогнейсами. Прочность высокая. Роговик. Текстура плотная массивная беспорядочная. Состоит из кристаллов кварца, биотита, полевых шпатов, граната, иногда роговой обманки, пироксена, магнетита. Цвет белый, буровато-, розовато-, светло-, темно-серый до черного, темно-зеленый. Структура мелкозернистая. Характерна значительная прочность и раковистый излом. Прочность исключительно высокая. Грейзен Текстура массивная беспорядочная. Состоит из кварца, мусковита, иногда турмалина, топаза, флюорита. Цвет белый, светло-серый, зеленоватый. Структура крупнокристаллическая с зубчатыми неровными очертаниями зерен кварца и чешуек слюды. Прочность высокая. Кварцит. Текстура массивная, редко сланцеватая (см.рисунок 18). Состоит в основном из зерен кварца, сцементированных кремнеземом (смесь опала, кварца и халцедона). Структура мелко- и тонко-зернистая; иногда зерна трудно различимы (сливной кварцит). Цвет белый, серый, желтый, красноватый, малиновый и др. Характерна очень большая прочность. Кварцитовидный песчаник - переходная порода от песчаников к кварцитам (начальная стадия метаморфизации). Ножом не царапается. Оставляет след на стали и стекле. Известковистый сланец. Текстура сланцеватая. Состоит из кальцита, хлорита, кварца или доломита и кварца. Переходная порода от известняка (доломита) к мрамору (начальная стадия метаморфизации). Мрамор. Текстура массивная, полосчатая, реже сланцеватая. Состоит из кальцита, реже доломита, иногда с примесью графита, хлорита и др. Цвет белый, светло-серый, розовый, голубой, желтоватый, черный, пестрый. Структура тонко-, мелко-, средне- и крупнозернистая. Характерно бурное вскипание при действии 10 %-ной соляной кислоты. Доломитовый мрамор вскипает с соляной кислотой только в порошке или в нагретом виде. Прочность средняя. Легко царапается ножом. Кварцево-серицитовый сланец. Текстура сланцеватая Светлый слюдяной сланец с преобладанием кварца и серицита – разновидности мусковита. Хлоритовый сланец. Текстура сланцеватая. Состоит из хлорита, часто с примесью кварца, талька, слюд, полевых шпатов, граната. Цвет зеленый различных оттенков. Структура чешуйчато-зернистая или листовая. На ощупь жирный, раскалывается на пластинки Легко царапается ножом. Видны чешуйки или листочки хлорита. Кварц без увеличения заметен плохо. Окраска различная: розовая, серая, зеленая и др. Скальный грунт. Тальковый сланец, Талькит. Текстура сланцеватая, у талькита - массивная. Состоит из талька, кварца, иногда хлорита, слюд. Цвет белый, светло-серый, зеленоватый, желтоватый. Структура чешуйчато-зернистая. Жирный на ощупь, царапается ногтем. При наличии одного талька называется тальковый камень. Талькит содержит 75...99 % талька, кварц, рудные минералы. Структура мелко-чешуйчатая.
6.1 Элементы рельефа и его формы Водораздельная – различают поверхностный сток двух противоположных склонов. К характерным точкам рельефа относят вершины (наибольшая высота на данном участке местности), перевальные (дно понижений гребней хребтов), устьевые (устья рек) и донные (наиболее низкая точка понижения рельефа). Формы рельефа образованы из различных сочетаний элементов рельефа. Различают две группы форм рельефа: положительные – выпуклые по отношению к плоскости горизонта, отрицательные – вогнутые. Различают следующие формы рельефа: Положительные: Отрицательные: 6.2 Размеры и происхождение форм рельефа Холмистый рельеф представляют собой поверхность земли, на которой часто чередуются возвышенности (холмы) с высотами не более 200 м и понижения в виде ложбин и котловин. Холмистый рельеф нередко занимает большие площади и представляет собой переходный тип рельефа между равнинным и горным. Горный рельеф представляет собой крупные с относительной высотой более 200 м возвышенности (горы, хребты) и понижения (долины, впадины, котловины). По происхождению горы принято делить на тектонические, вулканические и эрозионные.
7.1 Грунты как горные породы 7.2 Свойства грунтов | ||||||||||||||
|
|
|
Дата добавления: 2014-01-04; Просмотров: 2964; Нарушение авторских прав?; Мы поможем в написании вашей работы!
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет