Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Различные формы представления высказываний

 

Литерой - называется элемент высказывания x или её отрицание.

Элементарной дизъюнкцией называется выражение следующего вида:

, (2.2)

где - литера.

Элементарной конъюнкцией называется выражение следующего вида:

, (2.3)

Дизъюнктивной нормальной формой (ДНФ) формулы называется выражение вида:

, (2.4)

где - элементарная конъюнкция.

 

Конъюнктивной нормальной формой (КНФ) формулы называется выражение вида:

, (2.5)

где - элементарная дизъюнкция.

Любую формулу можно представить в виде ДНФ или КНФ.

 

ПРИМЕР

Пусть дана формула

Требуется получить ДНФ и КНФ данной формулы.

Применяя формулы равносильности, получаем КНФ :

Применяя формулы равносильности, получаем ДНФ :

Совершеннойдизъюнктивной нормальной формой(СДНФ) формулы называется такая ДНФ, для которой выполняются следующие условия:

1. Все элементарные конъюнкции, входящие в ДНФ , различны.

2. Все элементарные конъюнкции, входящие в ДНФ , содержат литеры, соответствующие всем переменным.

3. Каждая элементарная конъюнкция, входящая в ДНФ , не содержит двух одинаковых литер.

4. Каждая элементарная конъюнкция, входящая в ДНФ , не содержит переменную и ее отрицание.

СДНФ можно получить двумя способами:

1. по таблице истинности;

2. с помощью равносильных преобразований.

Первый способ получения СДНФ рассмотрен выше. Рассмотрим второй способ, который состоит в следующем:

С помощью равносильных преобразований формулы получают ДНФ . При этом в полученной ДНФ возможны следующие ситуации:

1. Элементарная конъюнкция ДНФ не содержит переменную , тогда используются следующие равносильные преобразования:

2. Если в ДНФ входят две одинаковые элементарные конъюнкции, то используя следующее равносильное преобразование:

,

одну элементарную конъюнкцию можно отбросить.

3. Если элементарная конъюнкция ДНФ содержит одновременно переменную и ее отрицание, то используя следующие равносильные преобразования:

,

эту элементарную конъюнкцию можно отбросить

4. Если элементарная конъюнкция ДНФ содержит дважды переменную , то используя следующее равносильное преобразование:

,

одну переменную можно отбросить

СДНФ формулы существует в единственном виде.

 

ПРИМЕР

Получить СДНФ формулы

С помощью равносильных преобразований получаем СДНФ :

С помощью таблицы истинности получаем СДНФ :


 

           
           
           
           
           
           
           
           

СДНФ

Очевидно, что в результат двух способов совпадает.

 

Совершеннойконъюнктивной нормальной формой(СКНФ) формулы называется такая КНФ, для которой выполняются следующие условия:

1. Все элементарные дизъюнкции, входящие в КНФ , различны.

2. Все элементарные дизъюнкции, входящие в КНФ , содержат литеры, соответствующие всем переменным.

3. Каждая элементарная дизъюнкция, входящая в КНФ , не содержит двух одинаковых литер.

4. Каждая элементарная дизъюнкция, входящая в КНФ , не содержит переменную и ее отрицание.

СКНФ можно получить двумя способами:

1. по таблице истинности;

2. с помощью равносильных преобразований.

По первому способу по таблице истинности получаем СДНФ , а СКНФ можно получить, следуя следующему правилу

С помощью равносильных преобразований формулы получают КНФ . При этом в полученной КНФ возможны следующие ситуации:

1. Элементарная дизъюнкция КНФ не содержит переменную , тогда используются следующие равносильные преобразования:

2. Если в КНФ входят две одинаковые элементарные дизъюнкции, то используя следующее равносильное преобразование:

,

одну элементарную дизъюнкцию можно отбросить.

3. Если элементарная дизъюнкция КНФ содержит одновременно переменную и ее отрицание, то используя следующие равносильные преобразования:

,

эту элементарную дизъюнкцию можно отбросить.

4. Если элементарная дизъюнкция КНФ содержит дважды переменную , то используя следующее равносильное преобразование:

,

одну переменную можно отбросить.

СКНФ формулы существует в единственном виде.

 

ПРИМЕР

Получить СКНФ формулы

С помощью равносильных преобразований получаем СКНФ :

С помощью таблицы истинности получаем СДНФ :

 

             
             
             
             
             
             
             
             


СДНФ

Очевидно, что в результат двух способов совпадает.

 

СДНФ формулы можно получить из СКНФ , используя следующее правило:

 

 

<== предыдущая лекция | следующая лекция ==>
Представление произвольной функции алгебры логики в виде формулы алгебры логики | Выполнимость формулы алгебры логики
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 295; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.