Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Представление произвольной функции алгебры логики в виде формулы алгебры логики


Пусть - произвольная функция алгебры логики переменных.

Рассмотрим формулу

(2.1)

которая составлена следующим образом: каждое слагаемое этой логической суммы представляет собой конъюнкцию, в которой первый член является значением функции при некоторых определенных значениях переменных , остальные же члены конъюнкции представляют собой переменные или их отрицания. При этом под знаком отрицания находятся те и только те переменные, которые в первом члене конъюнкции имеют значение 0..

Вместе с тем формула (2.1) содержит в виде логических слагаемых всевозможные конъюнкции указанного вида.

Ясно, что формула (2.1)полностью определяет функцию . Иначе говоря, значения функции и формулы (2.1) совпадают на всех наборах значений переменных . То есть функция

Составление формул по таблице истинности. может быть представлена в виде:

(2.2)

 

ПРИМЕР Пусть функция имеет следующую таблицу истинности:

 

Тогда функция может быть определена в следующем виде:

Нетрудно заметить, что для определении функции берутся только те наборы переменных , при которых функция принимает значения 1, что значительно упрощает процедуру определения функции .

 

Формула (2.1) обладает свойствами:

1. Каждое логическое слагаемое формулы содержит все переменные , входящие в функцию .

2. Все логические слагаемые формулы различны.

3. Ни одно логическое слагаемое формулы не содержит одновременно переменную и ее отрицание.

4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.

5. Перечисленные свойства называются свойствами совершенства.

 

<== предыдущая лекция | следующая лекция ==>
Формулы равносильности | Различные формы представления высказываний

Дата добавления: 2014-01-04; Просмотров: 717; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.