КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод Квайна
Минимизация сложных высказываний. Существует несколько способов минимизации сложных высказываний. Рассмотрим самые распространенные: · метод Квайна; · карты Вейча; · минимизирующие карты.
Алгоритм метода Квайна включает в себя следующие этапы: 1. Любая формула приводится к СДНФ. 2. СДНФ приводится к сокращенной ДНФ (СкДНФ). При получении СкДНФ используются следующие формулы равносильности: а) Формула склеивания б) Формула неполного склеивания в) Формула поглощения Применяя все возможные процедуры склеивания, СДНФ приводится к СкДНФ. 3. Минимальная форма формулы (МДНФ ) получается на основе импликантной матрицы путем нахождения минимального покрытия этой матрицы. Импликанта – это элементарная конъюнкция СкДНФ. Конституента единицы – это элементарная конъюнкция СДНФ. Импликантная матрица – это матрица импликант и констиуент единиц. (столбцы - конституенты единицы, строки – импликанты). МДНФ может быть несколько.
ПРИМЕР. Необходимо найти МДНФ формулы: 1 2 3 4 5 6 Осуществляем всевозможные склеивания 1-2 1-4 2-3 3-6 4-5 5-6 СкДНФ имеет вид: Составляем импликантную матрицу
По данной импликантной матрице можно выбрать следующие МДНФ
Дата добавления: 2014-01-04; Просмотров: 275; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |