Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физический и экономический смысл производной

 

Рассмотрим прямолинейное движение по закону s=s(t), где s - пройденный путь, а t – время. Необходимо найти скорость движения v в момент t0.

За промежуток времени Dt с момента t0 будет пройдено расстояние
Ds = s(t0 + Dt) - s(t0). Тогда средняя скорость за этот промежуток времени составит Ds/Dt. Чем меньше будет промежуток Dt, тем лучше это отношение будет оценивать скорость в момент времени t0: .

Таким образом, производная функции представляет собой скорость изменения значения функции в точке. Этот смысл производной удобно использовать не только в физике, но и в экономике.

Например, если функция p = p(q) выражает зависимость прибыли p от объема произведенной продукции q, то ее производная показывает предельный рост прибыли (скорость изменения прибыли при изменении объема производства): . Если функция q = q(u) выражает зависимость объема производства q от числа работников u, то ее производная показывает скорость изменения этого объема при изменении числа работников: (предельная производительность дополнительного работника). Если функция описывает зависимость объема производства от времени, то получим производительность в единицу времени. Если функция w = w(q) выражает зависимость издержек производства от количества выпускаемой продукции, то ее производная означает предельные издержки (приближенно показывает дополнительные затраты на производство единицы дополнительной продукции): И т.п.

На основе понятия производной в экономике рассчитываются предельная выручка, предельный доход, предельный продукт, предельная полезность, предельная производительность и другие предельные величины.

Предельные величины характеризуют процесс изменения экономического объекта. Таким образом, производная выступает как скорость изменения некоторого экономического объекта (процесса) во времени или относительного другого исследуемого фактора.

<== предыдущая лекция | следующая лекция ==>
Геометрический смысл производной | Дифференцируемость функции. Нахождение производной функции называется ее дифференцированием
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 943; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.