Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Монотонные последовательности. Число е

Определение 1. Последовательность называется убывающей (невозрастающей), если для всех выполняется неравенство .

Определение 2. Последовательность называется возрастающей (неубывающей), если для всех выполняется неравенство .

Определение 3. Убывающие, невозрастающие, возрастающие и неубывающие последовательности называются монотонными последовательностями, убывающие и возрастающие последовательности называют также строго монотонными последовательностями.

Очевидно, что неубывающая последовательность ограничена снизу, невозрастающая последовательность ограничена сверху. Поэтому всякая монотонная последовательность заведомо ограничена с одной стороны.

Пример 1. Последовательность возрастает, не убывает, убывает, не возрастает, – немонотонная последовательность.

Для монотонных последовательностей важную роль играет следующая

Теорема 1. Если неубывающая (невозрастающая) последовательность ограничена сверху (снизу), то она сходится.

Без доказательства.

Замечание. Теорему 1 можно сформулировать иначе.

Теорема 2. Для того чтобы монотонная последовательность сходилась, необходимо и достаточно, чтобы она была ограничена.

Достаточность установлена в теореме 1, необходимость – в теореме 2 § 4.

Условие монотонности не является необходимым для сходимости последовательности, так как сходящаяся последовательность не обязательно монотонна. Например, последовательность не монотонная, однако сходится к нулю.

Рассмотрим теперь последовательность . Как она себя ведет? Основание степени , поэтому ? С другой стороны, , а , поэтому ? Или предел не существует?

Чтобы ответить на эти вопросы, рассмотрим вспомогательную последовательность . Докажем, что она убывает и ограничена снизу. При этом нам будет нужна

Лемма. Если , то для всех натуральных значений n имеем

(неравенство Бернулли).

Неравенство Бернулли мы доказали на практических занятиях, когда изучали метод математической индукции.

Покажем, что последовательность убывает. Имеем

‌‌‌׀неравенство Бернулли׀,а это и означает, что последовательность убывает.

Ограниченность снизу следует из неравенства ‌‌‌׀неравенство Бернулли׀для всех натуральных значений n.

По теореме 1 существует , который обозначают буквой е. Поэтому .

Число е иррационально и трансцендентно, е = 2,718281828…. Оно является, как известно, основанием натуральных логарифмов.

Заметим, что неравенство Бернулли можно использовать для доказательства того, что при . Действительно, если , то . Тогда, по неравенству Бернулли, при . Отсюда при имеем , то есть при .

Пример 2. Имеем .

Пример 3. .

Заметим, что во всех этих примерах основание стремится к 1, а показатель степени – к , то есть имеет место неопределенность вида . Неопределенность такого вида, как мы видели, раскрывается с помощью замечательного предела .

<== предыдущая лекция | следующая лекция ==>
Свойства сходящихся последовательностей | Числовой ряд. Сходимость числового ряда
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 999; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.