КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Фатыхов Миннехан Абузарович
. Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности:
Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с их, а скорость и' относительно К' – с и'х. Тогда закон сложения скоростей примет вид , (13.14) Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью света с, то формулы (13.14) и (13.13) переходят в закон сложения скоростей в классической механике. Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью света) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей. Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если , то формула (13.14)) примет вид (аналогично можно показать, что при скорость и' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна. Докажем также, что если складываемые скорости сколь угодно близки к скорости света с, то их результирующая скорость будет всегда меньше или равна с. В качестве примера рассмотрим предельный случай u' = v = c. После подстановки в формулу (13.14) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить.
5. Интервал между событиями
Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разное. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т.е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами , такой физической величиной является интервал между двумя событиями: , (13.15) где – расстояние между точками обычного трехмерного пространства, в которых эти события произошли. Введя обозначение , , покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив ,, , , выражение (13.15) можно записать в виде . Интервал между теми же событиями в системе К' равен (13.16) Согласно преобразованиям Лоренца (13.8), . Подставив эти значения в (13.16), после элементарных преобразований получим, что , т.е. . Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета. Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея-Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство-время. Пространство и время не существуют вне материи и независимо от нее. Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т.е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
6. Основной закон релятивистской динамики материальной точки
Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX столетия на опытах с быстро движущимися электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением скорости по закону , (13.17) где – масса покоя материальной точки, т.е. масса, измеренная в той инерциальной системе отсчета, относительно которой материальная точка находится в покое; с – скорость света в вакууме; т – масса точки в системе отсчета, относительно которой она движется со скоростью и. Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса. Основной закон релятивистской динамики материальной точки имеет вид (13.18) или (13.19) где ) (13.20) – релятивистский импульс материальной точки. Отметим, что уравнение (13.20) внешне совпадает с основным уравнением ньютоновской механики. Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (13.20). Таким образом, уравнение (13.20) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой. В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса. Анализ формул (13.17) – (13.19) показывает, что при скоростях, значительно меньших скорости света, уравнение (13.20) переходит в основной закон классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально переход осуществляется при ). Таким образом, классическая механика – это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме). Экспериментальное доказательство зависимости массы от скорости (13.20) является подтверждением справедливости специальной теории относительности.
7. Взаимосвязь массы и энергии
Найдем кинетическую энергию релятивистской частицы (материальной точки). Раньше было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении: или dT = F d r (13.21) Учитывая, что d r = v dt, и подставив в (13.21) выражение (13.20), получим . Преобразовав данное выражение с учетом того, что v d v = vdv, а также учитывая формулу (13.20), придем к выражению (13.22) т.е. приращение кинетической энергии частицы пропорционально приращению ее массы. Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя т0, то, проинтегрировав (13.22), получим Т = (т – т0)с (13.23) или кинетическая энергия релятивистской частицы имеет вид (13.24) Разлагая в ряд , пренебрегая членами второго порядка малости при v<<c, выражение (13.24) переходит в классическое: . А. Эйнштейн обобщил положение (13.22), предположив, что оно справедливо не только для кинетической энергии материальной точки, но и для полной энергии, а именно: любое изменение массы сопровождается изменением полной энергии материальной точки (13.25) Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т: (13.26) Уравнение (13.26), равно как и (13.25), выражает фундаментальный закон природы – закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле. Учитывая выражение (13.23), закон (13.26) можно записать в виде Е = т0 с2 + Т, откуда следует, что покоящееся тело (Т = 0) также обладает энергией Е0 = т0с2, называемой энергией покоя. Классическая механика энергию покоя Е0 не учитывает, считая, что при v =0 энергия покоящегося тела равна нулю. В силу однородности времени в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т.е. не изменяется с течением времени. Из формул (13.26) и (13.20) найдем релятивистское соотношение между полной энергией и импульсом частицы: , (13.27) Возвращаясь к уравнению (13.26), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т.е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса т = Е/с2, (13.28) и, наоборот, со всякой массой связана определенная энергия (13.20). Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи. Эту ломку укоренившихся представлений некоторые философы пытались использовать для распространения двух разновидностей идеализма: энергетизма и философского релятивизма. Первая из этих теорий рассматривала возможность преобразования массы в энергию и, наоборот, энергии в массу, доказывая «эквивалентность материи и энергии». Закон взаимосвязи массы и энергии действительно утверждает, что любые превращения энергии тела сопровождаются изменениями его массы, однако при этом масса не «переходит в энергию». Закон взаимосвязи массы и энергии является подтверждением неразрывности материи и движения – одного из основных положений диалектического материализма. Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи – пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
Контрольные вопросы
1. В чем физическая сущность механического принципа относительности? 2. В чем заключается правило сложения скоростей в классической механике? 3. 3.Каковы причины возникновения специальной теории относительности? 4. В чем заключаются основные постулаты специальной теории относительности? 5. Зависит ли от скорости движения системы отсчета скорость тела? скорость света? 6. Запишите и прокомментируйте преобразования Лоренца. При каких условиях они переходят в преобразования Галилея? 7. Какой вывод о пространстве и времени можно сделать на основе преобразований Лоренца? 8. 8.Одновременны ли события в системе К', если в системе К они происходят в одной точке и одновременны? в системе А" события разобщены, но одновременны? Обосновать ответ. 9. Какие следствия вытекают из специальной теории относительности для размеров тел и длительности событий в разных системах отсчета? Обосновать ответ. 10. При какой скорости движения релятивистское сокращение длины движущегося тела составит 25%? 11. В чем состоит «парадокс близнецов» и как его разрешить? 12. В чем заключается релятивистский закон сложения скоростей? Как показать, что он находится в согласии с постулатами Эйнштейна? 13. Как определяется интервал между событиями? Доказать, что он является инвариантом при переходе от одной инерциальной системы отсчета к другой. 14. Какой вид имеет основной закон релятивистской динамики материальной точки? Чем он отличается от основного закона ньютоновской механики? 15. В чем заключается закон сохранения релятивистского импульса? релятивистской массы? 16. Как выражается кинетическая энергия в релятивистской механике? 17. При каком условии релятивистская формула для кинетической энергии переходит в классическую формулу? 18. Сформулируйте и запишите закон взаимосвязи массы и энергии. В чем его физическая сущность? Приведите примеры его экспериментального подтверждения.
Учебное издание
Дата добавления: 2014-01-04; Просмотров: 426; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |