Limit and continuity of the function of two variables.
Definition 4.1: The limit of function as is a number if for any there exists a such that for all points in domain of, from and.
The following rules hold if, .
Sum rule
Difference rule
Product rule
Constant multiple rule
,
Quotient rule
if
All limits are to be taken as and and are to be real.
Example 4.1. Find limits of the functions: a), b), c)
Solution:
a)
b); c)
=.
Definition 4.2: A function is said to be continuous at the point if:
1) is defined at ,
2) exist,
3).
For function fair all properties of the continuous functions similar to functions of one variable. For example, function is continuous everywhere, except a point. For functionthe points of discontinuity are all points for which or.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление