Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Аппроксимация КЭ


Имея КЭ разного типа, при выборе конечно-элементной модели сооружения можно вводить узлы с разным числом степеней свободы. Например, в плоской системе могут рассматриваться узлы как с тремя степенями свободы (рис. 14.2 а), так и с двумя (рис. 14.2 б) или даже с одной степенью свободы. В первом случае учитываются два линейных (поступательных) и одно угловое перемещение узла, во втором – два линейных перемещения, а в третьем − лишь одно поступательное перемещение. В пространственной системе узлы могут иметь шесть (рис. 14.2 в) или три степени свободы (рис. 14.2 г).

Рис. 14.2

Для упорядочения степеней свободы и соответствующих перемещений узлов КЭ все они нумеруются в определенном порядке и собираются в общий вектор перемещений u.

Чтобы воспользоваться принципом Лагранжа, вводятся так называемые координатные функции, аппроксимирующие непрерывное поле перемещений внутри КЭ через перемещения ее узлов:

.

Здесь – вектор перемещений внутренних точек КЭ,C – матрица координатных функций, – вектор коэффициентов. Элементы матрицы C выбираются в виде полиномов, непрерывных внутри КЭ. Если в полиноме учитывается минимальное число членов, то такой КЭ называется симплекс-элементом. При учете большего числа членов полинома КЭ называется комплекс-элементом.

В качестве простейшего примера рассмотрим ферменный КЭ с узлами i и j (рис. 14.3 а) в местной системе координат . Его узлы имеют по одной поступательной степени свободы по оси и соответствующие им узловые перемещения и . Допустим, что в узлах КЭ приложены силы и (рис. 14.3 б).

Рис. 14.3

Перемещения внутренних точек элемента будем аппроксимировать полиномом первой степени

.

Запишем его в матричной форме:

,

где называется матрицей координатных функций, а является вектором неизвестных коэффициентов.

Подставив и в наш полином, получим два равенства:

, .

С другой стороны, и (рис. 14.3 б). Учитывая их, предыдущие равенства перепишем так:

,

.

Тогда их можно записать в матричной форме



и представить как матричное уравнение

,

связывающее вектор узловых перемещений и вектор координат через представленную выше матрицу .

Определим вектор :

.

Тогда

или

.

Входящая сюда матрица Hназывается матрицей форм. Она позволяет аппроксимировать поле перемещений внутренних точек КЭ через перемещения узлов.

По аналогии с перемещениями поле внутренних усилий в КЭ можно аппроксимировать через вектор узловых сил по формуле

.

Например, для рассмотренного КЭ имеем

.

<== предыдущая лекция | следующая лекция ==>
Вариационные основы МКЭ | Матрица жесткости КЭ

Дата добавления: 2014-01-04; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.