КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вариационный ряд
Пусть имеется выборка объемом
Где
Здесь Очевидно, что:
т.е. сумма частот всех значений случайной величины
Расположенная в порядке возрастания вариант последовательность пар чисел, составленная из вариантов и их частот Пример 10.1. Рассмотрим в качестве изучаемого признака число продаж пар обуви в магазине в течение месяца для 20 продавцов: 16, 12, 15, 15, 23, 9, 15, 13, 14, 14, 21, 15, 14, 17, 8, 19, 13, 22, 17, 16. Расположим значения признака в порядке возрастания: 8, 9, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 17, 17, 19, 21, 22, 23. Составим вариационный ряд в виде таблицы:
Составим вариационный ряд относительных частот:
Вариация признака может быть дискретной или непрерывной. Определение 10.4. Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (целое число). Определение 10.5. Признаки, значения которых отличаются друг от друга на сколько угодно малую величину, (т.е. признак может принимать любые значения в некотором интервале) называются непрерывно варьирующими. Примеры дискретных вариационных рядов, тарифный разряд рабочего, число преступлений, и. п. К непрерывно варьирующим признакам относятся среднедушевой доход, масса человека, дальность полета снаряда и т. п. Построение вариационного ряда на основе непрерывно варьирующего признака путем перечисления всех возможных значений признака и их частот невозможно. Выход – группировка их в некоторые интервалы с определенными границами. В интервалах запись верхней границы предыдущего интервала совпадает с нижней границей последующего. Предполагается, что каждому интервалу принадлежит лишь один из его концов, либо во всех случаях левый, либо правый. Обычно данные, полученные в результате наблюдения непрерывно варьирующего признака, представляют в виде интервального вариационного ряда. Частоты в таком ряду относятся не к отдельным значениям, а ко всему интервалу. Пример 10.2. Менеджер большого универмага записал суммы денег, которые израсходовали184 покупателя, посетившие отдел верхней одежды в день сезонной распродажи по сниженным ценам. Зная минимальную и максимальную стоимость покупки, менеджер сгруппировал данные о суммах, израсходованных на покупки, в следующей таблице:
Для выбора оптимальной величины интервала (при которой вариационный ряд с равными интервалами будет не очень громоздким) применяют формулу Стэрджеса:
где Определение 10.6. Разность между максимальным и минимальным элементами выборки называется размахом выборки:
Определение 10.7. Медианой
где Определение 10.8. Модой
где Вариационные ряды графически могут изображаться в виде полигона или гистограммы. Определение 10.9. Полигоном называется ломаная линия в осях координат Определение 10.10. Гистограмма – ступенчатая фигура, составленная из прямоугольников, построенных на интервалах так, что площадь каждого прямоугольника равна количеству вариант, соответствующих его основанию (рис. 10.1 b). Гистограмма – это удобный способ представления частот сгруппированных данных в графическом виде.
Определение 10.10. Накопленные частоты показывают, сколько значений признака (или какая их доля) не превышает заданного значения Для интервального ряда – это сумма частот всех интервалов, предшествующих данному (включая данный). Накопленные частоты можно рассчитывать в восходящем порядке (частоты вариантов суммируются сверху вниз) и нисходящем (частоты вариантов суммируются сверху вниз). В приведенной ниже таблице показаны накопленные частоты. Таблица 10.1
Дата добавления: 2013-12-12; Просмотров: 897; Нарушение авторских прав?; Мы поможем в написании вашей работы! |