Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вектор скорости. Средняя и мгновенная скорость




Движения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по величине пути. Для характеристики такого движения вводят понятие скорости.

1) Введем понятие среднейскорости () – это величина, равная отношению перемещения к тому промежутку времени, в течение которого это перемещение произошло .

2) За малый промежуток времени Dt точка проходит путь DS, совершая перемещение (рис. 2.6). При Dt®0 отношения и практически перестают изменяться как по величине, так и по направлению и стремятся к определенному пределу

и

который будет выражать вектор мгновеннойскорости, т.е. скорости в данный момент времени.

В математике данный предел называется производной, следовательно, скорость можно определить как производную радиус-вектора движущейся точки по времени:

или по модулю .

При бесконечном уменьшении Dt различие между DS и будет уменьшаться и в пределе они совпадут, тогда можно записать, что модуль скорости

, (2.1)

т.е. мгновенная скорость при неравномерном движении численно равна первой производной пути по времени.

Итак, вектор мгновенной скорости в любой точке траектории направлен по касательной к траектории (и совпадает с направлением вектора перемещения) и численно равен первой производной пути по времени.

Единица измерения v: [v]=м/с.

Если рассматривать движение в пространстве, то величину и направление вектора скорости можно представить через проекции этого вектора на направления осей x, y, z (рис. 2.7).

;

где ,

– единичные вектора по осям x, y, z.

Тогда

Следовательно,




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 855; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.