Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предел и непрерывность функции нескольких переменных

 

Введем понятие δ-окрестности точки М 0 (х0, у0) на плоскости О ху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х0 , у0, z0). Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М 0. Иногда это множество называют «шаром» в n -мерном пространстве.

Определение 1.4. Число А называется пределом функции нескольких переменных f в точке М 0, если такое, что | f(M) – A | < ε для любой точки М из δ-окрестности М 0.

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М 0, условно говоря, по любой траектории внутри δ-окрестности точки М 0. Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов, получаемых последовательными предельными переходами по каждому аргументу в отдельности.

 

 

Примеры.

  1. Покажем, что функция не имеет предела при МО (0,0). Действительно, если в качестве линии, по которой точка М приближается к началу координат, выбрать прямую у = х, то на этой прямой . Если же траекторией движения считать прямую у = 2 х, то . Следовательно, предел в точке (0,0) не существует.
  2. Найдем повторные пределы функции при х→0, у→0. , . Если же произвести предельные переходы в обратном порядке, получим: Таким образом, повторные пределы оказались различными (откуда следует, конечно, что функция не имеет в точке (0,0) предела в обычном смысле).

 

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

 

Определение 1.5. Функция f называется непрерывной в точке М 0, если (1.2)

Если ввести обозначения , то условие (1.2) можно переписать в форме (1.3)

Определение 1.6. Внутренняя точка М0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (1.2), (1.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва.

Примеры.

  1. Функция z = x ² + y ² непрерывна в любой точке плоскости О ху. Действительно, , поэтому .
  2. Единственной точкой разрыва функции является точка (0,0).
  3. Для функции линией разрыва является прямая х + у = 0.

 

Свойства пределов и непрерывных функций.

 

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М0 , то существует и предел сложной функции при , где - координаты точки Р 0.

3) Если функции f(M) и g(M) непрерывны в точке М 0, то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M)•g(M), f(M)/g(M) (если g(M 0) ≠ 0).

4) Если функции непрерывны в точке Р0 , а функция непрерывна в точке М0 , где , то сложная функция непрерывна в точке Р0.

5) Функция непрерывная в замкнутой ограниченной области D, принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения А и В, то она принимает в области D и любое промежуточное значение, лежащее между А и В.

7) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D, в которой f = 0.

 

<== предыдущая лекция | следующая лекция ==>
Лекция 1. Функции нескольких переменных | Частные производные
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 1029; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.