КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифференцирование сложных функций
Пусть аргументы функции z = f (x, y) являются, в свою очередь, функциями переменных u и v: x = x (u, v), y = y (u, v). Тогда функция f тоже есть функция от u и v. Выясним, как найти ее частные производные по аргументам u и v, не делая непосредственной подстановки z = f (x(u, v), y(u, v)). При этом будем предполагать, что все рассматриваемые функции имеют частные производные по всем своим аргументам. Зададим аргументу u приращение Δ u, не изменяя аргумент v. Тогда . (2.7) Если же задать приращение только аргументу v, получим: . (2.8) Разделим обе части равенства (2.7) на Δ u, а равенства (2.8) – на Δ v и перейдем к пределу соответственно при Δ u→ 0 и Δ v→ 0. Учтем при этом, что в силу непрерывности функций х и у . Следовательно, (2.9) Рассмотрим некоторые частные случаи. Пусть x = x(t), y = y(t). Тогда функция f (x,y) является фактически функцией одной переменной t, и можно, используя формулы (2.9) и заменяя в них частные производные х и у по u и v на обычные производные по t (разумеется, при условии дифференцируемости функций x(t) и y(t)), получить выражение для : (2.10) Предположим теперь, что в качестве t выступает переменная х, то есть х и у связаны соотношением у = у (х). При этом, как и в предыдущем случае, функция f является функцией одной переменной х. Используя формулу (2.10) при t = x и учитывая, что , получим, что . (2.11) Обратим внимание на то, что в этой формуле присутствуют две производные функции f по аргументу х: слева стоит так называемая полная производная, в отличие от частной, стоящей справа. Примеры. 1. Пусть z = xy, где x = u ² + v, y = uv ². Найдем и . Для этого предварительно вычислим частные производные трех заданных функций по каждому из своих аргументов: Тогда из формулы (2.9) получим: (В окончательный результат подставляем выражения для х и у как функций u и v). 2. Найдем полную производную функции z = sin (x + y ²), где y = cos x.
Дата добавления: 2013-12-12; Просмотров: 410; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |