Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расчетно-графическая работа № 2




Контрольные задания

Вопросы для самоанализа

Выводы

Задача № 2

Задача № 1

Принадлежность точки прямой

Рис. 3.4 Точка принадлежит прямой, если их одноименные проекции совпадают (рис. 3.4). Точка С принадлежит отрезку АВ, так как С2 принадлежит фронтальной проекции отрезка, а С1 – горизонтальной проекции отрезка.

Определить, принадлежит ли точка С отрезку прямой АВ.

Найти вторую проекцию точки В, если она принадлежит прямой а (рис. 3.12–3.15)

Рис. 3.12 Рис. 3.13
Рис. 3.14 Рис. 3.15

На основе теории Монжа можно преобразовать пространственное изображение не только точки, но и более сложных объектов, в частности прямой линии и ее отрезка.

Для получения проекций отрезка АВ строят проекции его концов-точек А и В – А1В1; А2В2; А3В3. Соединив одноименные проекции точек, получают проекции отрезка А1В1 – на плоскость p1; А2В2 – на плоскость p2; А3В3 – на плоскость p3. Проекции концов отрезков связаны линиями проекционной связи.

Точка принадлежит отрезку, если ее проекции располагаются на одноименных проекциях этой же прямой.

Отрезок прямой относительно плоскостей проекций может быть:

  • отрезком общего положения (углы наклона отрезка к плоскостям проекций произвольные);
  • отрезком уровня (параллельным какой-либо плоскости проекций);
  • проецирующим отрезком (перпендикулярным какой-либо плоскости проекций).

Отрезок может быть задан как в системе p1p 2, так и в p1p2p3.

По двум заданным проекциям всегда можно построить третью.

Отрезок в пространстве характеризуется длиной и углом наклона к плоскостям проекций.

Для отрезков уровня и проецирующих эти величины определяются на самом комплексном чертеже, так как одна из проекций отрезка частного положения есть его натуральная величина.

Для нахождения натуральной величины отрезка общего положения и углов его наклона к плоскостям проекций применяется метод прямоугольного треугольника.

1. Что характерно для прямых, если они параллельны какой-либо плоскости проекции?

2. Какая проекция прямой будет параллельна оси Оx, если эта прямая параллельна p1?

3. Если одна из проекций прямой есть точка, что это за прямая?

4. Когда прямая проецируется на плоскость в натуральную величину?

5. Как определить натуральную величину отрезка общего положения?

  1. Что определяют D z и D y?

Основные понятия, которые необходимо знать:

– проекция прямой, отрезка;

– отрезок общего положения;

– прямые уровня (горизонталь, фронталь, профильная прямая);

– проецирующие прямые (горизонтально проецирующая, фронтально проецирующая, профильно проецирующая прямая).

Способы деятельности, которыми надо уметь пользоваться:

1. Построение третьей проекции отрезка по двум заданным.

  1. Нахождение натуральной величины отрезка методом прямоугольного треугольника.

1. Провести сравнительный анализ положения проекций прямых:

а) по расположению относительно плоскостей проекций, осей;

б) по сходству и различию.

Определение натуральной величины отрезка прямой




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.