КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предварительные сведения о процессах теплопередачи
Сохранение энергии Лекция №2. Основные выводы. Итак, применение фундаментального закона сохранения массы позволило получить разнообразные модели рассматриваемых процессов. Различие между моделями определяется типов полученных уравнений (гиперболический, параболический, эллиптический), их пространственно-временными характеристиками (стационарное, нестационарное, одномерное, многомерное), наличием или отсутствием нелинейностей, а также постановкой краевых условий. Таким образом, в зависимости от конкретных свойств объекта и дополнительных предположений, основываясь на одном и том же фундаментальном законе, можно получить совершенно различные математические модели. С другой стороны, одни и те же математические модели могут, в силу своей универсальности, отвечать объектам совершенно разной природы. Закон сохранения энергии вместе с некоторыми дополнительными предположениями применим для построения моделей распространения тепла в сплошной среде. Сформулируем типичные краевые задачи для уравнений теплопередачи. Обсудим некоторые физические и математические свойства полученных моделей. Тепловая энергия или тепло – это энергия хаотичного движения атомов или молекул вещества. Обмен теплом между различными участками называется теплопередачей, а сами материалы, обладающие хорошо выраженным свойством теплопередачи, - теплопроводными. К ним относятся, например, металлы, в которых тепловая энергия переносится в основном свободными электронами, некоторыми газами и т.д. Процессы передачи тепла рассматриваются в условиях так называемого локального термодинамического равновесия (ЛТР). Понятие ЛТР для газов вводится при , т.е. когда длина свободного пробега частиц вещества много меньше характерных размеров рассматриваемого объекта (сплошная среда). ЛТР подразумевает также, что процессы изучаются при временах, больше чем (время между столкновениями частиц), и на размерах, больших, чем . Тогда в областях вещества, размеры которых превосходят величину (но много меньше величины ), устанавливается равновесие и для них можно ввести средние величины плотности, скорости теплового движения частиц и т.д. Эти локальные величины (разные в разных точках среды) при сформулированных предположениях находятся из равновесного максвелловского распределения частиц. К ним относится температура , определяющая среднюю кинетическую энергию частиц: , где – масса частицы, - средняя скорость хаотичного движения, - постоянная Больцмана (в случае так называемого больцмановского газа). Связанная с хаотичным движением частиц энергии вещества (внутренняя энергия) определяется через температуру с помощью величины удельной теплоемкости , а именно , , где – плотность вещества (- число частиц в единице объема), - внутренняя энергия единицы массы. Другими словами, теплоемкость – это энергия, которую необходимо сообщить единице массы вещества, чтобы увеличить температуру на один градус. Наиболее простое выражение для теплоемкости получается в случае идеального газа (газа, частицы которого взаимодействуют лишь при непосредственном взаимодействии столкновения и, подобно биллиардным шарам, без потери суммарной кинетической энергии). Если в некотором объеме идеального газа содержится частиц, то их полная внутренняя энергия есть , где - суммарная масса частиц, а удельная внутренняя энергия, или энергия на единицу массы, дается формулой , Т.е. теплоемкость идеального газа равна и не зависит от величин . В общем случае связь между внутренней энергией и температурой более сложная. Например, помимо кинетической энергии движущихся частиц, внутренняя энергия содержит составляющую, связанную с потенциальной энергией их взаимодействия, зависящей от среднего расстояния между ними. В свою очередь , где - число частиц в единице объема, т.е. зависит от плотности . Поэтому в теории теплопередачи величины (или, что то же самое, ) являются, вообще говоря, функциями от и . Их конкретный вид определяется свойствами рассматриваемой среды.
Дата добавления: 2013-12-12; Просмотров: 479; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |