КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Замечание 1Доказанная теорема дает практический метод вычисления ранга матрицы. При доказательстве теоремы мы не рассматривали все миноры (r +1)-го порядка, а лишь окаймляющие миноры, поэтому из равенства нулю лишь этих миноров вытекает, что r – максимальное число линейно независимых столбцов матрицы. Таким образом, имеем следующее правило вычисления ранга матрицы, которое носит название метода окаймляющих миноров. Если найден минор k -го порядка матрицы А отличный от нуля, то вычисляют все окаймляющие миноры (k +1)-го порядка. Если все они равны 0, то . N. Найти ранг матрицы методом окаймляющих миноров. Решение. Вычислим минор, расположенный в первых двух строках и первых двух столбцах. . Значит, . Вычислим все окаймляющие миноры: . Таким образом, . Ответ: Замечание 2. Следствие 5 из теоремы о ранге дает другой способ вычисления ранга матрицы: матрицу сводят к ступенчатому виду, а затем подсчитывают количество ненулевых строк. N. Вычислить ранг матрицы . Решение. Сведем матрицу А к ступенчатому виду.
(поскольку имеем две ненулевые строки). Ответ:
Дата добавления: 2013-12-12; Просмотров: 234; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |