Пусть задана прямая и точка Найдем расстояние от точки до прямой
Отложим направляющий вектор прямой от точки
Рис. 15.4
Очевидно, что искомое расстояние равно высоте параллелограмма, построенногона векторах и (рис. 15.4). Значит,
(15.10)
Пусть заданы параллельные прямые и Найдем расстояние между этими прямыми.
Вектор – направляющий вектор данных параллельных прямых, Искомое расстояние равно высоте
Рис. 15.5
параллелограмма, построенного на векторах и (рис. 15.5). Значит,
(15.11)
5. Расстояние между двумя скрещивающимися прямыми.
Пусть заданы две скрещивающиеся прямые:
и
Найдем расстояние между этими прямыми.
Искомое расстояние равно высоте параллелепипеда построенного на векторах и (рис. 15.6). Значит, ,
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление