КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Управление потоком данных
Для управления потоком данных (Flow Control) могут использоваться два варианта протокола — аппаратный и программный. Аппаратный протокол управления потоком RTS/CTS (Hardware Flow Control) использует сигнал CTS, который останавливает передачу данных, если приемник не готов к их приему. Передатчик «выпускает» очередной байт только при включенной линии CTS. Байт, который уже начал передаваться, задержать сигналом CTS невозможно (это гарантирует целостность посылки). Программный протокол управления потоком XON/XOFF используется при дуплексном канале передачи данных. Работает протокол следующим образом: если приемник не может далее принимать данные, то он по обратному последовательному каналу, посылает байт-символ XOFF (13h). Передатчик, приняв этот символ, приостанавливает передачу. Когда принимающее устройство снова становится готовым к приему данных, оно посылает символ XON (llh), приняв который передатчик возобновляет работу. Время реакции передатчика на изменение состояния приемника по сравнению с аппаратным протоколом увеличивается, по крайней мере на время передачи символа (XON или XOFF) плюс время реакции программы передатчика на прием символа. Интерфейс «токовая петля» Распространенным вариантом последовательного интерфейса является токовая петля (рисунок 4.11). В ней электрическим сигналом является не уровень напряжения относительно общего провода, а ток в двухпроводной линии, соединяющей приемник и передатчик. Интерфейс "токовая петля" используется для передачи информации с 1950-х годов. Первоначально в нем использовался ток 60 мА позже, с 1962 года, получил распространение интерфейс с током 20 мА, преимущественно в телетайпных аппаратах. В 1980-х годах начала широко применяться "токовая петля" 4...20 мА в разнообразном технологическом оборудовании, датчиках и исполнительных устройствах средств автоматики. Популярность "токовой петли" начала падать после появления стандарта на интерфейс RS-485 (1983 г.) и в настоящее время в новом оборудовании она практически не применяется. В передатчике "токовой петли" используется не источник напряжения, а источник тока. По определению, ток, вытекающий из источника тока, не зависит от параметров нагрузки. Поэтому в "токовой петле" протекает ток, не зависящий от сопротивления кабеля Rкабеля, сопротивления нагрузки Rн и э. д. с. индуктивной помехи Еинд, а также от напряжения питания источника тока Еп. Ток в петле может измениться только вследствие утечек кабеля, которые очень малы. Это свойство токовой петли является основным и определяет все варианты ее применения. Емкостная наводка Еемк, э. д. с. которой приложена источнику тока, не может быть ослаблена в "токовой петле" и для ее подавления следует использовать экранирование.
В качестве линии передачи обычно используется экранированная витая пара, которая совместно с дифференциальным приемником позволяет ослабить индуктивную и синфазную помеху. На приемном конце ток петли преобразуется в напряжение с помощью калиброванного сопротивления Rн. При токе 20 мА для получения стандартного напряжения 2,5 В, 5 В или 10 В используют резистор сопротивлением 125 Ом, 250 Ом или 500 Ом соответственно. Основным недостатком "токовой петли" является ее принципиально низкое быстродействие, которое ограничивается скоростью заряда емкости кабеля Скабеля от источника тока. Например, при типовой погонной емкости кабеля 75 пФ/м и длине 1 км емкость кабеля составит 75 нФ. Для заряда такой емкости от источника тока 20 мА до напряжения 5 В необходимо время 19 мкс, что соответствует скорости передачи около 9 кбит/с. На рисунке 4.12- приведены зависимости максимальной скорости передачи от длины кабеля при разных уровнях искажений (дрожания).
Вторым недостатком "токовой петли", ограничивающим ее практическое применение, является отсутствие стандарта на конструктивное исполнение разъемов и электрические параметры, хотя фактически стали общепринятыми диапазоны токовых сигналов 0...20 мА и 4...20 мА; гораздо реже используют 0...60 мА. В перспективных разработках рекомендуется использовать только диапазон 4...20 мА, как обеспечивающий возможность диагностики обрыва линии. (см. раздел "Аппаратное резервирование").
Интерфейс "токовая петля" распространен в двух версиях: цифровой и аналоговой (рисунок 4.13). Аналоговая "токовая петля"
Аналоговая версия "токовой петли" используется, как правило, для передачи сигналов от разнообразных датчиков к контроллеру или от контроллера к исполнительным устройствам. Применение "токовой петли" в данном случае дает следующие преимущества. Во-первых, приведение диапазона изменения измеряемой величины к стандартному диапазону обеспечивает взаимозаменяемость компонентов. Во-вторых, становится возможным передать сигнал на большое расстояние с высокой точностью (погрешность "токовой петли" может быть снижена до ±0,05%). Кроме того, стандарт "токовая петля" поддерживается подавляющим большинством производителей средств промышленной автоматизации. В - третьих, в варианте "4...20 мА" в качестве начала отсчета принят ток 4 мА. Это позволяет производить диагностику целостности кабеля (кабель имеет разрыв, если ток равен нулю) в отличие от варианта "0...20 мА", где величина "0 мА" может означать не только нулевую величину сигнала, но и обрыв кабеля. В-четвертых уровень отсчета 4 мА дает возможность подачи энергии датчику для его питания. На рисунке 4.13 показаны два варианта построения аналоговой "токовой петли". В варианте а) используется встроенный незаземленный источник питания Eп, в варианте б) источник питания - внешний. Встроенный источник удобен при монтаже системы, а внешний удобен тем, что его можно выбрать с любыми параметрами в зависимости от поставленной задачи. Принцип действия обоих вариантов состоит в том, что при бесконечно большом коэффициенте усиления операционного усилителя (ОУ) напряжение между его входами равно нулю и поэтому ток через резистор R0 равен Uвх/R 0, а поскольку у идеального ОУ ток входов равен нулю, то ток через резистор строго равен току в петле и, как следует из этой формулы, не зависит от сопротивления нагрузки. Поэтому напряжение на выходе приемника определяется как . Достоинством схемы с операционным усилителем является возможность калибровки передатчика без подключенного к нему кабеля и приемника, поскольку вносимая ими погрешность пренебрежимо мала. Напряжение источника выбирается таким, чтобы обеспечить работу транзистора передатчика в активном (ненасыщенном) режиме и скомпенсировать падение напряжения на проводах кабеля и сопротивлениях , . Для этого выбирают , где - напряжение насыщения транзистора (1...2 В). Например, при типовых значениях 500 Ом и сопротивлении кабеля 100 Ом (при длине 1 км) получим напряжение источника питания петли 22 В; ближайшее стандартное значение равно 24 В. Отметим, что мощность, связанная с избыточным напряжением источника питания по сравнению с рассчитанным значением, будет рассеиваться на транзисторе, что особенно существенно для интегральных передатчиков, не имеющих теплоотвода. В схемах (рисунок 4.13) используется гальваническая развязка между входом передатчика и передающим каскадом. Она необходима для исключения паразитных связей между передатчиком и приемником, подробнее см. раздел "Защита от помех". Примером передатчика для аналоговой токовой петли является модуль NL-4AO фирмы НИЛ АП, имеющий 4 канала вывода аналоговых сигналов, гальваническую развязку и предназначенный для вывода из компьютера и передачи на исполнительные устройства тока в стандарте 0...20 мА или 4...20 мА. Структура модуля приведена в разделе "Контроллеры для систем автоматизации". Модуль содержит микроконтроллер, который осуществляет связь с компьютером по интерфейсуRS-485, исполняет команды компьютера и выполняет компенсацию погрешностей преобразования с помощью коэффициентов, полученных при калибровке источников тока и хранимых в запоминающем устройстве ЭППЗУ (электрически программируемое постоянное запоминающее устройство). Преобразование цифровых данных в аналоговый сигнал выполняется с помощью 4-канального цифро-аналогового преобразователя (ЦАП). Для расширения функциональных возможностей модуль имеет также выходы напряжения (которые не имеют отношения к рассматриваемой теме). Цифровая "токовая тепля" Цифровая "токовая петля" используется обычно в версии "0...20 мА", поскольку она реализуется гораздо проще, чем "4...20 мА" (рисунок 4.14). Поскольку при цифровой передаче данных точность передачи логических уровней роли не играет, можно использовать источник тока с не очень большим внутренним сопротивлением и низкой точностью. Так, на рисунке 4.14 при стандартном значении напряжения питания =24 В и падении напряжения на входе приемника 0,8 В для получения тока 20 мА сопротивление должно быть равно примерно 1,2 кОм. Сопротивление кабеля сечением 0,35 кв. мм и длиной 1 км равно 97 Ом, что составит всего 10% от общего сопротивления петли и им можно пренебречь. Падение напряжения на диоде оптрона составляет 3,3% от напряжения источника питания, и его влиянием на ток в петле также можно пренебречь. Поэтому с достаточной для практики точностью можно считать, что передатчик в этой схеме является источником тока.
Как аналоговая, так и цифровая "токовая петля" может использоваться для передачи информации нескольким приемникам одновременно (рисунок 4.15). Вследствие низкой скорости передачи информации по "токовой петле" согласование длинной линии с передатчиком и приемником не требуется. "Токовая петля" нашла свое "второе рождение" в протоколе HART.
Логической единице (состоянию «включено») соответствует протекание тока 20 мА, а логическому нулю — отсутствие тока. Такое представление сигналов для описанного формата асинхронной посылки позволяет обнаружить обрыв линии, так как приемник заметит отсутствие стоп-бита по наличию постоянного логического нуля (обрыв линии действует как постоянный логический нуль). Токовая петля обычно предполагает гальваническую развязку входных цепей приемника от схемы устройства. При этом источником тока в петле является передатчик, но возможно и питание от приемника. Токовая петля с гальванической развязкой позволяет передавать сигналы на расстояния до нескольких километров. Расстояние определяется сопротивлением пары проводов и уровнем помех. Поскольку интерфейс требует пары проводов для каждого сигнала, обычно используют только два сигнала интерфейса. В случае двунаправленного обмена применяются только сигналы передаваемых и принимаемых данных, а для управления потоком используется программный метод XON/XOFF. Если двунаправленный обмен не требуется, используют одну линию данных, а для управления потоком обратная линия задействуется для сигнала CTS (аппаратный протокол) или встречной линии данных (программный протокол).
Дата добавления: 2013-12-12; Просмотров: 723; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |