Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

По определению наращенной суммы ренты




Классификация рент

 

1. ренты немедленные (начало срока ренты и начало действия контракта совпадают) и ренты отсроченные;

2. ренты с ежегодным начислением процентов (m=1), начислением процентов m раз в году и непрерывным начислением процентов;

3. ренты с постоянными и переменными членами;

4. ренты конечные и бесконечные. Если срок ренты более 50 лет, рента считается вечной.

5. рента обычная или постнумерандо, если платежи производятся в конце периода; рента пренумерандо, если платежи производятся в начале периода.

Пример 4-х летней ренты постнумерандо:

 

 
 


 

 
 

 

 


Пример 4-х летней ренты пренумерандо:

 
 

 

 


Обычно анализ потока платежей предполагает расчет или наращенной суммы или современной стоимости.

Наращенная сумма S ренты

Наращенная сумма - сумма всех членов потока платежей с начисленными на них к концу срока процентами.

1. Годовая рента постнумерандо

Ее характеристики: член ренты R, срок ренты n, ставка i, число выплат в году p=1, число начислений процентов в году m=1.

Положим n=4 года и выведем формулу наращенной суммы ренты.

Построим схему наращения членов ренты на временной оси. Т.к. срок ренты больше одного года, естественно использовать сложные проценты.

Например, на член ренты R, внесенный в конце первого года, будут начисляться проценты 3 года. К концу срока ренты эта сумма будет составлять .

Подобным образом, на член ренты R, внесенный в конце второго года, будут начисляться проценты 2 года. К концу срока ренты эта сумма будет составлять . И т. д.

 

 
 

 


 

 

Замечание:

Воспользовались формулой возрастающей геометрической прогрессии:

 

Тогда общая формула наращенной суммы ренты будет иметь вид:

- коэффициент наращения ренты, будем находить его, пользуясь математическим калькулятором.




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 306; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.