Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Булева алгебра всех подмножеств данного множества




Основные понятия математической логики

Основные законы логики. Таблицы истинности

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности и ложности) и логических операций над ними [4].

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно [4].

Для обозначения истины (истинного высказывания) используется символ 1, а для обозначения лжи (ложного высказывания) используется символ 0.

Рассмотрим примеры логических высказываний (см. Таблицу 1):

Таблица 1. Примеры логических выражений

Предложение Характеристика с точки зрения алгебры логики
Иваново – Родина Первого Совета Истинное логическое высказывание
За зимой наступит весна Истинное логическое высказывание
В городе Иваново проживают только граждане России Ложное логическое высказывание
После дождя всегда тепло Ложное логическое высказывание
После вторника будет выходной Не является логическим высказыванием, т.к. не известно, о каком человеке, каком месяце и дне идет речь (если у человека текущий график работы, возможно, что у него в среду будет выходной, в противном случае среда – рабочий день; если в среду будет праздничный день, например, 8 марта, то этот день также будет выходным)

Употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если…то», «тогда и только тогда» и др. позволяют из уже заданных высказываний строить более сложные высказывания. Такие слова и словосочетания называют логическими связками. Высказывания, образованные с помощью логических связок – называют составными высказываниями. Высказывания, не являющиеся составными, называют элементарными.

Для обозначения логических высказываний, им назначают имена. Например, если А – высказывание «В четверг был дождь», В – высказывание «В пятницу было солнечно», то составное высказывание «В четверг был дождь, а в пятницу было солнечно», можно записать в виде: А и В.

Здесь А, В – логические высказывания (могут быть либо истинными, либо ложными), и – логическая связка.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (см. Таблицу 2):

Таблица 2. Логические связки

Логическая связка Название Обозна-чение Высказы-вание Математическая запись
  и конъюнкция логическое умножение Ù, & *, And A и В A Ù B, A & B A * B, A And B
  или дизъюнкция логическое сложение Ú +, Or A или В A Ú B A + B, A Or B
  не инверсия, логическое отрицание ¬,, Not не А ¬А,, Not A
  Если…то импликация, логическое следование →, Þ Если A, то В A → B A Þ B
  тогда и только тогда эквивалентность, равносильность, логическое тождество «, º Û, ~ А тогда и только тогда, когда В А«В, АºВ АÛВ, А~В

Импликацию можно выразить через дизъюнкцию и отрицание: A → B = ¬А Ú B (1)

Эквивалентность можно выразить через отрицание, дизъюнкцию и конъюнкцию: A «B = (¬А Ú B) Ù (¬B Ú А) (2)

Вычисление значения логического выражения производится слева направо в соответствии с таблицей истинности (см. Таблицу 3) и приоритетом выполнения логических операций (см. Таблицу 4). Порядок выполнения операций можно менять, используя круглые скобки.

Таблица 3. Таблица истинности

A B A Ú B A Ù B ¬A
         
         
         
         

Таблица 4. Приоритет выполнения логических операций

Приоритет операции Логическая операция
Первый (высший) Логическое отрицание
Второй Конъюнкция (логическое умножение)
Третий Дизъюнкция (логическое сложение)
Четвертый Импликация (следование)
Пятый (низший) Эквивалентность (равносильность)

 

U = {a1, a2… an) [U] = N [P(U)] = 2n

Легко показать, что свойства операций над множествами совпадают со свойствами (аксиомами) булевой алгебры. То есть, множество P(U) с операциями объединения, пересечения и дополнения является булевой алгеброй.

Oбъединение эквивалентно V, пересечение - &, дополнение - *, пустое множество – 0, а универсальное – I.

Все аксиомы булевой алгебры справедливы в операциях над множествами.

Булева алгебра характеристических векторов.

Пусть A <= U, A <- P(U)? - характеристический вектор этого подмножества.

?A = {?1,?2..?n) n = [P(U)]

?i = 1, если ai <- A (принадлежит).

?i = 0, если ai не принадлежит A.

U = {1 2 3 4 5 6 7 8 9} A = {2 4 6 8} B = {1 2 7}

?A = {0 1 0 1 0 1 0 1 0}?B = {1 1 0 0 0 0 1 0 0} или

?A = 010101010 – скобки не нужны?A= 110000100

Характеристические векторы размерностью n называются булевыми векторами. Они располагаются в вершинах n – мерного булева куба. Номером булевого вектора является число в двоичном представлении, которым он является

1101 – номер.

Два булевых вектора называются соседними, если их координаты отличаются только в одном разряде (если они отличаются только одной координатой). Совокупность всех булевых векторов размерности n называется булевым кубом размерностью Bn.

0 – нулевой вектор. I – вектор из одних единиц.

 

|XY |X&Y |X V Y |

|00 |0 |0 |

|01 |0 |1 |

|10 |0 |1 |

|11 |1 |1 |

Отрицание X = 0 Y = 0 Х = 1 Y= 1

Для размерности n операции над векторами производятся по координатно. Логическая сумма двух векторов – вектор, координаты которого являются логическими суммами соответствующих исходных векторов. Аналогично определено произведение.

Утверждение Между множеством всех подмножеств множества U и булевым кубом Bn, где n= =[U] можно становить взаимное соответствие, при котором операции объединения множества соответствует операции логического сложения (их характеристических векторов), операции пересечения множеств соответствует операция логического умножения их характеристических векторов, а операции дополнения – операция отрицания. Пустому множеству соответствует нулевой вектор, а универсальному – единичный.

Следствие Множество всех характеристических векторов является булевой алгеброй.




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 1269; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.