КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оптические свойства металлических нанокластеров
Спектры поглощения металлических нанокластеров характеризуются интенсивной широкой полосой, которая отсутствует у массивных материалов. Эта полоса связана с коллективным возбуждением электронов проводимости (появлением квазичастиц-поверхностных плазмонов). Коллоидные растворы и гранулированные пленки интенсивно окрашиваются из-за оптических свойств наночастиц. Разбавленные коллоидные растворы благородных, щелочных и редкоземельных металлов образуют цветовую гамму от красного до синего цветов. Гранулированные пленки золота из частиц размером 4 нм имеют максимум поглощения в диапазоне 560-600 нм (красный цвет). Гранулированные пленки из металла уменьшают поглощение света при переходе из видимого света в инфракрасный диапазон, а массивные металлы, наоборот, увеличивают поглощение с ростом длины волны. Плазмонный эффект состоит в резонансном поглощении нанокластером падающего электромагнитного излучения. Мнимая часть диэлектрической проницаемости ансамбля 1010-1013 наночастиц (дисперсия) обратно пропорциональна радиусу наночастицы Где -мнимая часть диэлектрической проницаемости макрокристалла,-некоторая функция частоты. От размера частиц зависит ширина полосы поглощения и форма её низкочастотного края. Эксперименты и расчеты показывают, что сдвиг частоты резонанса для нанокластеров металла в основном определяется диэлектрической проницаемостью матрицы (окружения нанокластера). Если варьировать межкластерное взаимодействие и диэлектрическую проницаемость можно формировать наноматериалы с измененной длиной волны плазмонного поглощения и цвета наноструктуры. Туннельное прохождение электрона через барьер между нанокластерами в коллоидном растворе может использоваться при создании новых наноматериалов.
Металлические нанокластеры в оптических стеклах Цветное витражное стекло средневековых соборов, содержит наноразмерные металлические частицы. Размер наночастиц золота влияет на оптический спектр поглощения кварцевого стекла (окиси кремния ) в видимом диапазоне. Спектры поглощения металлических нанокластеров характеризуются интенсивной широкой полосой, которая отсутствует у массивных материалов. При очень высоких частотах электроны проводимости в металлах ведут себя как плазма –электрически нейтральный ионизированный газ. В плазме твердого тела отрицательные заряды –электроны, положительные заряды-ионы решетки. Если кластеры имеют размеры меньше длины волны падающего света, и не взаимодействуют друг с другом, то электромагнитная волна вызывает колебания электронной плазмы приводящее к её поглощению. При совпадении собственной частоты колебаний электронов и частоты внешнего электрического поля волны возникает резонансное поглощение металлическим нанокластером падающего электромагнитного излучения. Коллективное движение электронов описывается как газ квазичастиц плазмонов обладающих энергией (-собственная частота плазмонов). Для вычисления зависимости коэффициента поглощения от длины волны используют классическую теорию рассеяния Ми. Коэффициент поглощения маленькой сферической частицы металла. находящейся в непоглощающей среде Пул139 + Где -концентрация сфер объемом , ,- действительная и мнимая части комплексной диэлектрической проницаемости сфер, -показатель преломления непоглощающей среды, -длина волны падающего света. Профиль линии поглощения в области резонанса имеет лоренцову форму. Для нанокластеров размером много меньше длины волны резонансная частота определяется формулой Где -плотность электронов, -электрическая постоянная СИ, -масса элнктрона,-действительная часть диэлектрической проницаемости среды -компонента связанная с межзонными переходами в нанокластере. Другим важным для технологии свойством композитных металлизированных стекол является оптическая нелинейность - зависимость показателей преломления от интенсивности падающего света . Нелинейные оптические эффекты можно использовать при создании оптических ключей, которые станут основными элементами фотонного компьютера. Нелинейность характеризуется поляризацией под действием напряженности электрического поля световой волны Где -диэлектрическая постоянная среды. В наноматериалах, включающие нанокластеры золота и серебра, плазмонный резонанс возникает при совпадении частот излучения лазера с частотой колебания свободных электронов в нанокластерах металлов. Это ведет к локализации возбуждения в нанокластерах и к резкому усилению локального поля, которое генерируется первичным излучением лазера с напряженностью более . Полимерный нанокомпозит на основе диацетиленового мономера включающий кластеры золота с размерами около 2 нм содержащий 7-16 % металла позволял увеличивать в 200 раз оптическую поляризуемость третьего порядка . На основе такого нелинейного оптического материала можно создавать электронно-оптические преобразователи со значительным усилением.
Дата добавления: 2013-12-12; Просмотров: 719; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |