КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Условие главного максимума для дифракционной решетки
Дифракционная решетка - это совокупность большого числа одинаковых щелей, отстоящих друг от друга на одно и то же расстояние. Расстояние d между соответственными точками соседних щелей называют периодом решетки: d = a + b.
Пусть на дифракционную решетку с числом щелей N падает по нормали параллельный пучок света (плоская волна, 15.1.7) с длиной волны λ. Между экраном и решеткой поместим собирающую линзу. Экран расположим в фокальной плоскости линзы. По принципу Гюйгенса-Френеля (19.2) для нахождения амплитуды результирующего колебания в какой-либо точке P экрана наблюдения надо найти результат интерференции всех вторичных волн, с учетом их фаз и амплитуд. Линза собирает в точке P все параллельные лучи, идущие от решетки под углом φ. Каждая щель создает колебания с амплитудой зависящей от φ (19.3.2.3). . Разность хода лучей, идущих от соответственных точек соседних щелей найдем из треугольника ABC: . При выполнении условия максимума (18.1.2.3) , таким образом, условие главного максимума для дифракционной решетки будет иметь следующий вид: Целое число m называют порядком максимума. Колебания от соседних щелей при выполнении условия максимума в точку P будут приходить в одинаковой фазе. Результирующая амплитуда Aр, создаваемая в точке P решеткой будет в N раз больше амплитуды от одной щели: . Интенсивность света (16.5.4): будет в N2 раз больше, чем интенсивность Iщ, создаваемая одной щелью.
19.4.2. Зависимость интенсивности дифракционной картины решетки от угла дифракции φ Амплитуда результирующего колебания от N щелей, Ap(φ), есть результат многолучевой интерференции (18.3). Таким образом: . Здесь δ - разность фаз колебаний, идущих в точку P от соответственных точек соседних щелей. Выразим δ через Δ (18.1.2.2), а Δ из треугольника ABC: Подставив Aщ, полученную в (19.3.2.3), получим зависимость амплитуды результирующего колебания, создаваемого решеткой для угла φ: . Для интенсивности (16.5.4) получим: . Здесь I0 - интенсивность, создаваемая одной щелью при φ = 0, первая дробь учитывает зависимость от интенсивности от φ одной щели, а вторая учитывает результат многолучевой интерференции N щелей. При выполнении условия главного максимума d·Sinφ = mλ вторая дробь после раскрытия неопределенности по правилу Лопиталя дает N2. Таким образом, интенсивность в максимуме, как и было показано в (19.4.1), в N2 раз больше интенсивности, создаваемой одной щелью.
Дата добавления: 2013-12-12; Просмотров: 9010; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |