Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Условие главного максимума для дифракционной решетки




Дифракционная решетка

- это совокупность большого числа одинаковых щелей, отстоящих друг от друга на одно и то же расстояние. Расстояние d между соответственными точками соседних щелей называют периодом решетки:

d = a + b.

 

Пусть на дифракционную решетку с числом щелей N падает по нормали параллельный пучок света (плоская волна, 15.1.7) с длиной волны λ. Между экраном и решеткой поместим собирающую линзу. Экран расположим в фокальной плоскости линзы. По принципу Гюйгенса-Френеля (19.2) для нахождения амплитуды результирующего колебания в какой-либо точке P экрана наблюдения надо найти результат интерференции всех вторичных волн, с учетом их фаз и амплитуд. Линза собирает в точке P все параллельные лучи, идущие от решетки под углом φ.

Каждая щель создает колебания с амплитудой зависящей от φ (19.3.2.3).

.

Разность хода лучей, идущих от соответственных точек соседних щелей найдем из треугольника ABC:

.

При выполнении условия максимума (18.1.2.3)

,

таким образом, условие главного максимума для дифракционной решетки будет иметь следующий вид:

Целое число m называют порядком максимума. Колебания от соседних щелей при выполнении условия максимума в точку P будут приходить в одинаковой фазе. Результирующая амплитуда Aр, создаваемая в точке P решеткой будет в N раз больше амплитуды от одной щели:

.

Интенсивность света (16.5.4):

будет в N2 раз больше, чем интенсивность Iщ, создаваемая одной щелью.

 

19.4.2. Зависимость интенсивности дифракционной картины решетки от угла дифракции φ

Амплитуда результирующего колебания от N щелей, Ap(φ), есть результат многолучевой интерференции (18.3). Таким образом:

.

Здесь δ - разность фаз колебаний, идущих в точку P от соответственных точек соседних щелей. Выразим δ через Δ (18.1.2.2), а Δ из треугольника ABC:

Подставив Aщ, полученную в (19.3.2.3), получим зависимость амплитуды результирующего колебания, создаваемого решеткой для угла φ:

.

Для интенсивности (16.5.4) получим:

.

Здесь I0 - интенсивность, создаваемая одной щелью при φ = 0, первая дробь учитывает зависимость от интенсивности от φ одной щели, а вторая учитывает результат многолучевой интерференции N щелей.

При выполнении условия главного максимума d·Sinφ = mλ вторая дробь после раскрытия неопределенности по правилу Лопиталя дает N2. Таким образом, интенсивность в максимуме, как и было показано в (19.4.1), в N2 раз больше интенсивности, создаваемой одной щелью.

 




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 9010; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.