КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Изгиб прямого бруса
Рис. 14.6. Рис. 14.5. Рис. 14.4. Изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения. SМI = 0; Vа×z – Р×(z – x) – M = 0; откуда М = Vа×z – Р×(z – x). Рис. 14.3. Рис. 14.2. Подвижные опоры дают возможность балке беспрепятственно изменять свою длину при изменении температуры и тем самым устраняют возможность появления температурных напряжений. 2. Неподвижная шарнирная опора (рис. 14.2, б). Такая опора допускает вращение конца балки, но устраняет поступательное перемещение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие – горизонтальную и вертикальную. 3. Жесткая заделка, или защемление (рис. 14.2, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (реактивный момент). Балка с одним заделанным концом называется консольной балкой или просто консолью. Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, возможных для данной задачи, то балки называют статически неопределимыми. Для определения реакций в таких балках приходится составлять дополнительные уравнения – уравнения перемещений.
Определение внутренних усилий при изгибе
При плоском поперечном изгибе в поперечных сечениях балки возникают два внутренних усилия (внутренних силовых фактора) – изгибающий момент М и поперечная сила Q, Для их определения применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например на расстоянии z от левой опоры (рис. 14.3, а). Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части. Взаимодействие частей балки заменим внутренними усилиями: изгибающим моментом М и поперечной силой Q (рис. 14.3, б).
Для определения М и Q используем два уравнения равновесия: SУ = 0; Vа – Р – Q = 0; откуда Q = Vа – P; Таким образом, 1) поперечная сила Q в поперечном сечении балки численно равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от сечения;
Правило знаков для изгибающих моментов и поперечных сил
Поперечная сила в сечении балки I – I(рис. 14.4, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена снизу вверх, а справа – сверху вниз, и отрицательной – в противоположном случае (рис. 14.4, б).
Изгибающий момент в сечении балки, например в сечении I – I(рис. 14.5 и 14.6, а), считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 14.5 и 14.6, б). Моменты, изображенные на рисунках (а), изгибают балку выпуклостью вниз (растянуты нижние волокна балки), а моменты, изображенные на рисунках (б), изгибают балку выпуклостью вверх (растянуты верхние волокна балки). Это можно легко проверить, изгибая тонкую линейку.
Отсюда следует другое, более удобное для запоминания правило знаков для изгибающего момента. Изгибающий момент считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз. Волокна балки, расположенные в вогнутой части, испытывают сжатие, а в выпуклой – растяжение. При построении эпюр поперечных сил положительные ординаты откладываются вверх от рассматриваемой оси балки. В отличие от поперечных сил, положительные ординаты для эпюр изгибающих моментов откладываются вниз (показывают растянутые волокна).
Известно, что деформация изгиба характеризуется тем, что в поперечных сечениях балки возникают изгибающие моменты, и, часто одновременно с последними – поперечные силы; Изгиб называют чистым, если в сечениях балки возникают только изгибающие моменты. Если же наряду с изгибающими моментами в сечениях балки возникают и поперечные силы, изгиб называют поперечным. Деформация изгиба имеет место в результате действия внешних сил, приложенных перпендикулярно оси балки, а также от пар сил, плоскость действия которых проходит через ее ось. Плоскости, в которых лежат главные центральные оси инерции поперечных сечений, называют главными плоскостями балки.
Дата добавления: 2013-12-12; Просмотров: 1637; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |