Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вынужденные колебания. Резонанс. Для того чтобы возбудить в системе незату­хающие колебания, необходимо компенсировать потери энергии




Для того чтобы возбудить в системе незату­хающие колебания, необходимо компенсировать потери энергии, обусловленные трением (сопротивлением). Такая компенсация может производиться внешними по отношению к колебательной системе источниками энергии. Простейшим случаем является воздействие на систему переменной внешней силы F(t). Под влиянием этой силы в системе возникнут колебания, происходящие в такт с изменением силы; эти колеба­ния называются вынужденными.

Дифференциальное уравнение вынуж­денных колебаний имеет вид (2):

(12).

Это уравнение является линейным неоднородным дифференциальным уравнением 2 порядка; его общее решение представляет собой сумму общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения есть решение уравнения колебаний с затуханием, рассмотренное ранее. Рассмотрим частное решение неоднородного уравнения: x =A ·cos(Ωt –φ) (13), описывающее установившиеся колебания с частотой Ω вынуждающей силы.

Величины амплитуды A и сдвига фазы φ по отношению к фазе вынуждающей силы зависят от соотношения между собственной частотой ω0 системы и Ω, а также от затухания, действующе­го в системе:

; (14).

При некоторой частоте Ω0вынуждающей силы амплитуда вынужденных колебаний достигает максимума. Это явление называется резонан­сом (резонансом смещения). На рис. изображены резонансные кривые для трех значений коэффициента затухания β. Частота ωрез = Ω0 называется резонансной частотой. Ее значение можно найти, исследовав на минимум подкорен­ное выражение для A в формуле (14): (15).

Амплитуда при резонансе получается подстановкой Ω0 в выражение для амплитуды:

(16).




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 411; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.