КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Квантовая теория атомаУравнение Шредингера. Волны де Бройля описывают состояние только свободной частицы. В 1926 г. Э.Шредингер обобщил гипотезу де Бройля на случай движения микрочастицы во внешнем силовом поле и получил уравнение, описывающее поведение (распространение) волн вероятности во внешних силовых полях. Это уравнение, в результате решения которого получается конкретный вид ВФ, получило название волнового уравнения,или уравнения Шредингера Волновые свойства микрочастиц. Корпускулярно-волновой дуализм присущ не только свету, но и частицам вещества. Эту идею высказал, исходя из соображений симметрии, Луи де Бройль: если свет, который рассматривался как электромагнитная волна, может проявлять корпускулярные свойства, то и частицы вещества должны проявлять волновые свойства. Согласно этой идее, импульс частицы с массой m и скоростью υ равен р = mυ, а с другой стороны, он равен p= h/λ. Следовательно, движущейся частице можно поставить в соответствие волну с длиной: λБ = h/p = h/mυ. Величину λБ называют дебройлевской длиной волны частицы. Экспериментально волновые свойства микрочастиц были обнаружены в опытах по дифракции электронов на кристаллах. Наличие волновых свойств у частиц вносит ограничения в применимости к ним классической механики, согласно которой частица в любой момент времени занимает определенное положение в пространстве и обладает определенным импульсом. Когда проводится какое-либо измерение, его результат содержит некоторую неопределенность, обусловленную двумя факторами: корпускулярно-волновым дуализмом и неизбежным взаимодействием наблюдаемого объекта с регистрирующим прибором, приводящим к изменению состояния объекта. Поэтому существует предел, ограничивающий точность измерений. Этот предел не зависит от степени совершенства измерительного прибора, а присущ самой природе вещей. Это и есть принцип неопределенностей Гейзенберга. Количественные соотношения, выражающие этот принцип для конкретных динамических переменных, называются соотношениями неопределенностей. Наиболее важными являются два из них:
Первое соотношение утверждает, что нельзя измерить одновременно с абсолютной точностью положение (координату) и проекцию импульса микрочастицы на ту же ось. Чем точнее мы пытаемся определить положение объекта, т.е. чем меньше Δ х, тем больше будет неопределенность импульса Δ рx. Этот вывод можно понять из следующих рассуждений: пусть мы хотим как можно точнее узнать положение микрочастицы (Δ х→0). Для этого мы должны использовать фотоны с малой длиной волны λ (именно λ определяет точность измерения положения ∆х) и, соответственно, большим импульсом рf = h/λ. В результате такого соударения двух частиц измеряемая частица приобретает непредсказуемый импульс. Если же мы попытаемся точно измерить проекцию импульса, то большой окажется неопределенность в положении объекта. Принцип неопределенностей в то же время не запрещает точно определить что-то одно: либо положение, либо импульс. Можно также с абсолютной точностью измерить координату и проекции импульса на другие оси. Согласно этому соотношению неопределенностей: а) объяснена устойчивость атома; при гипотетическом падении электрона на ядро неопределенность положения электрона уменьшилась бы на 5 порядков с 10 –10 м (размер атома) до 10 –15 м (размер ядра). На 5 порядков соответственно увеличилась бы неопределенность импульса электрона и он, получив бы такую энергию, не смог бы удержаться в ядре; б) невозможно определить траекторию движения микрочастицы (для этого необходимо знать в каждый момент времени абсолютно точно и координату и импульс частицы); Второе соотношение устанавливает связь между неопределенностью энергии Δ E квазистационарного возбужденного состояния и средним временем жизни Δ t возбужденного состояния в атомных процессах. Например, достаточно точно можно измерить энергию системы в стационарном состоянии, время жизни в котором велико (Δ t → ∞), если же система находится в нестационарном состоянии, время жизни Δ t в котором конечно, энергию можно измерить с погрешностью порядка Δ E ~ ħ /Δ t. Волновая функция, физический смысл и свойства. Состояние квантовой частицы нельзя определять, как в классической механике одновременным заданием в каждый момент времени координат и импульса. Это запрещено принципом неопределенностей. По аналогии с электромагнитной волной, для которой электромагнитное поле определяется заданием некоторой функции координат и времени E(x,y,z,t), для описания движения микрочастиц вводится некоторая функция координат и времени Ψ(x,y,z,t), характеризующая волну де Бройля, и получившая название волновой функции (ВФ). Сама волновая функция Ψ в общем случае комплексна и поэтому не имеет наглядного физического представления, ее нельзя продемонстрировать экспериментально. Согласно М.Борну, физический смысл имеет квадрат модуля ВФ Т.о, Волну де Бройля можно рассматривать как волну вероятности, амплитудой которой является волновая функция. Де Бройль постулировал, что свободное движение частицы с определенной энергией E и импульсом
Функция Ψ должна удовлетворять т.н. стандартным условиям. Она должна быть однозначной, поскольку микрочастица в определенный момент времени может находиться только в одной точке пространства. Волновая функция и ее частные производные по координатам являются непрерывными во всех точках пространства (при движении частица не может исчезать в одном месте и появляться в другом). И наконец, волновая функция должна быть конечна, т.е. нигде не обращаться в бесконечность. Поскольку значение Волновую функцию, для которой выполняется это соотношение, называют нормированной, а само равенство – условием нормировки волновой функции. Нахождение вида волновой функции частицы, движущейся под действием внешних сил, является основной задачей квантовой механики, так как задание волновой функции есть полное и исчерпывающее описание этой частицы. Это связано с тем, что вероятностное поведение микрочастиц лежит в самой их природе.
где m – масса частицы, U(x,y,z,t) – потенциальная функция частицы в силовом поле. Как и все основные уравнения физики (например, законы Ньютона, уравнения Максвелла), уравнение Шредингера не имеет вывода. Правильность уравнения Шредингера и толкование смысла фигурирующей в нем волновой функции подтверждаются огромным опытным материалом современной физики. То, что уравнение Шредингера содержит лишь первую производную от Ψ по времени, связано с выражением принципа причинности: если известна волновая функция Ψ(x,y,z,0) частицы в начальный момент времени, то можно однозначно определить ее волновую функцию Ψ(x,y,z,t) в любые последующие моменты времени t > 0. Однако, точное знание ВФ для какой-либо точки пространства позволяет определить лишь вероятность обнаружения микрочастицы в этой точке. Часто потенциальная функция U частицы явным образом не зависит от времени и в этом случае она имеет смысл потенциальной энергии. Силы, действующие на частицу, а следовательно, и U(х,у,z) зависят только от координат. В этих случаях уравнение Шредингера можно упростить, исключив всякую зависимость от t. Это получается, если ВФ представить в виде произведения координатной и временной частей:
Подставив в зависящее от времени уравнение Шредингера это выражение и сократив все уравнение затем на общий экспоненциальный множитель, получим:
Это уравнение называется уравнением Шредингера для стационарных состояний. Волновое уравнение Шредингера играет в квантовой механике ту же роль, что 2 закон Ньютона в классической механике. Задать закон движения частицы в квантовой механике – значит определить Ψ -функцию в каждый момент времени в каждой точке пространства. Так как уравнение Шредингера является уравнением второго порядка в частных производных, то для его решения необходимо задавать начальные и граничные условия. Квантовая частица в потенциальной яме. Рассмотрим одномерное (вдоль оси х) движение частицы в потенциальном поле, называющемся бесконечно глубокой прямоугольной потенциальной ямой шириной ℓ:
Так как энергия частицы Е не может быть бесконечной, частица не может находиться вне ямы, поэтому вероятность ее обнаружения вне ямы, а значит, и волновая функция, равна нулю: w (x <0)= w (x>ℓ) и ψ (x <0)= ψ (x>ℓ)=0. Из условия непрерывности ВФ вытекает равенство нулю ВФ и на границе ямы: ψ(x=0)=ψ(x=ℓ)=0. Это граничные условия для решения уравнения Шредингера для частицы внутри потенциальной ямы: где Е — полная энергия частицы. Решение такого дифференциального уравнения имеет вид: ψ=A·sin(k·x), где Используя граничное условие ψ(ℓ)=0, получим: κn ·ℓ=n·π, где n =1,2,3,... – любое целое число, большее нуля (квантовое число). Еслиучесть, что импульс частицы pn = ħ·kn, то можнонайти возможные значения энергии частицы:
Уравнение Шредингера имеет решения, удовлетворяющие граничным условиям только при дискретных значениях квантового числа п. Энергия частицы в бесконечно глубокой потенциальной яме оказывается квантованной. Состояние частицы с наименьшей возможной энергией (n =1) называется основным, все остальные состояния – возбужденными. Волновая функция, отвечающая n -му уровню энергии: На границах ямы при х = 0 и х = ℓ всегда | ψn| 2 = 0, однако, вeроятность нахождения частицы в определенной точке внутри ящика может сильно меняться при разных значениях квантового числа п. Выводы: энергия микрочастицы, движущейся в потенциальной яме, пробегает дискретный ряд значений; даже в основном состоянии частица не находится в состоянии полного покоя; дискретный характер энергетических уровней проявляется при малой массе частиц и малых размерах области, в которой происходит движение; при больших значениях квантовых чисел и пространственно неограниченном движении квантовомеханические соотношения переходят в формулы классической физики. Квантовым гармоническим осциллятором называется микрочастица массы т, находящаяся в параболической потенциальной яме вида U(x)=κ·x2/2 и совершающая гармоническое движение с частотой ω; κ -постоянная. Модель квантового осциллятора особенно полезна при исследовании малых колебаний систем около положения равновесия, например, колебаний атомов в узлах кристаллической решетки или колебаний атомов около их положений равновесия в молекуле. По аналогии с классической теорией (пружинный маятник) положим
Полученное уравнение имеет конечные, однозначные и непрерывные решения, т.е. собственные функции, не для всех значений энергии Е, а только при собственных значениях, удовлетворяющих условию: Число nυ называется колебательным квантовым числом. Из последнего равенства следует, что энергия квантового осциллятора квантуется. Энергетический спектр представляет собой эквидистантные, т.е. отстоящие друг от друга на одинаковую величину Δ E=ħω, уровни. Минимальная энергия, которой может обладать квантовый осциллятор, равна Е 0 = ħω / 2 и называется энергией нулевых колебаний, или нулевой энергией и соответствует абсолютному нулю температур. То, что минимальная энергия осциллятора не может быть равна нулю даже при 0К, находится в соответствии с признанием относительности покоя и вечности движения. Если бы энергия частицы равнялась нулю, то это означало бы, что частица покоится и ее импульс и координата одновременно имеют точные значения, что противоречит принципу неопределенностей. Существование нулевых колебаний доказывают опыты по наблюдению рассеяния света прозрачными кристаллами при сверхнизких (вплоть до 10 – 6К) температурах. Расчет показывает, что для квантового осциллятора возможны переходы только между соседними уровнями, т.е. с изменением квантового числа nυ на единицу: Δ nυ = ±1. Это условие называется правилом отбора, оно показывает, какие из всех мыслимых переходов реализуются в действительности. При каждом из переходов излучается или поглощается фотон (или другая частица – фонон) с энергией ħω, где ω – его циклическая частота. Оптические атомные спектры. Известно, что в излучении нагретых тел представлены все длины волн (сплошной спектр). Если нагреть до достаточно высокой температуры атомарный газ, то в спектре его излучения (спектре испускания) появляются яркие светящиеся линии с определенными дискретными длинами волн. Такие спектры называются линейчатыми. Каждый химический элемент обладает собственным линейчатым спектром. Простейшим является атом водорода: он состоит из протона и электрона. У водорода самый простой спектр. Дж. Бальмер при изучении видимой части спектра водорода обнаружил четыре спектральные линии с частотами 4,552; 6,173; 6,912 и 7,317 (в 1014 с-1) и показал, что частоты этих линий могут быть рассчитаны по формуле: Установлено, что по мере увеличения частоты линии располагаются все ближе и ближе друг к другу и становятся все менее интенсивными. Вблизи линии с частотой 0,8242·1015 с-1 линии сгущаются настолько, что их трудно различить. Эта частота, соответствующая п=∞, называется границей серии, после нее уже не наблюдается отдельных линий, а имеется слабо выраженный сплошной спектр. Совокупность спектральных линий, обнаруживающих в своей последовательности и в распределении интенсивности описанную выше закономерность, называется спектральной серией. Наряду с серией Бальмера в спектре атома водорода был обнаружен ряд других серий, представляемых совершенно аналогичными формулами:
В ультрафиолетовой области Лайман открыл серию линий, частоты которых соответствуют значению m = 1. В инфракрасной области были обнаружены другие спектральные серии (серии Пашена m = 3, Брэкета m =4, Пфунда m = 5 и т.д.). Вид этих формул, дискретность частот, определяемую целыми числами n и m, не смогла объяснить классическая физика. Боровская модель атома водорода. Спектральные серии и устойчивость атома водорода Н.Бор объяснил на основе двух постулатов:
Дата добавления: 2013-12-12; Просмотров: 739; Нарушение авторских прав?; Мы поможем в написании вашей работы! |