Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Успехи естественнонаучных дисциплин в ХIХ веке

Механическая картина мира и классическая наука.

Понятие классической науки, точнее классического естествознания (а еще точнее – физики), относится к комплексу отдельных научных программ, направлений и дисциплин, которые основывались на исходных ньютоновых представлениях о дискретной структуре мира и механическом характере происходящих в нем процессов. (Механическая, или механистическая модель мира – "мир как механизм"). Впервые научное знание развивалось на "собственном фундаменте". Это не означает отсутствия метафизических его оснований или ошибочных положений, а лишь сознательное исключение ненаучных (прежде всего, религиозных) факторов при рассмотрении научных проблем. Механистические представления широко распространялись на понимание биологических, электрических, химических и социально-экономических процессов. Механизм стал синонимом научности как таковой. На таком концептуальном подходе строилась система как общего, так и профессионального образования. Радикально новые техника и технологии развивались эмпирически, на собственном основании, и были инструментом практического познания и освоения единого социоприродного мира.

Дисциплинарная структура науки развивалась по схеме: механика – физика – химия – биология.

Век Просвещения. Первая половина XVIII в., на первый взгляд кажется, периодом научного упадка – влияние Ньютона было столь мощным, что никто не решался даже продолжить его исследования – интерес сместился к медико-биологическим проблемам (ими Ньютон не занимался) и к частным вопросам. Однако авторитет научности, напротив, радикально и быстро возрастал, что коррелировалось с "общим духом" европейской культуры XVIII в. – в обществе наука стала модной.

Рождались "наивные" утопические идеи: господство над природой, возможность волевого рационального переустройства общества. Господствовал лозунг "Знание – сила".

Известными представителями Просвещения в Британиибыли: Дж. Локк, Г.Э. Лессинг, И.Г. Гердер; Германии – И. Кант, И.В. Гете, Ф. Шиллер; в США – Т. Пейн, Б. Франклин, Т. Джефферсон; в России – Н.И. Новиков, А.Н. Радищев.

Научные направления XVIII века. Понятие "научная дисциплина" неприменимо к XVIII в., оно относится к XIX в. Это понятие можно описать такими терминами, как кафедра, школа, специальная периодика, профессионализм исследователей. В XVIII в. ничего этого не было. Наука была, главным образом, делом любителей. Часть из них объединялась в академии, не отличавшиеся высоким научным уровнем. XVIII век, в содержательном развитии науки, можно представить шестью программами.

Исследования теплоты и энергии. Исследования теплоты и энергии – это скорее инженерно-экспериментальная программа, которая включала в себя слабо связанные между собой фрагменты, но имевшая единый технический результат – паровую машину – и определенный теоретический результат (правда, уже в XIX в.) – описание термодинамических циклов С. Карно (1796-1832). Важно, что целью этих исследований были не тепловые процессы, а возможность получения с их помощью вакуума; и, благодаря Э.Торричели (1608-1647), осознание того, что атмосферное давление является колоссальным источником энергии.

Металлургический процесс. Вероятно, самой важной проблемой металлургии в XVIII в. была проблема замены древесного угля (которого остро не хватало) на минеральное топливо. Другой особенностью этого периода был переход от кричного процесса передела чугуна в железо к пудлингованию (перемешиванию). Полностью вся схема процесса, с использованием прокатных валков, была запатентована Генри Картом (1740-1800) в 1784г.

Электричество. Электричество рассматривалось как некая таинственная невесомая жидкость, способная перетекать через особые предметы – проводники. Первое теоретическое приближение к осмыслению электрических явлений связано с Б. Франклином (1706-1790), и С. Греем (1666-1736). Измерение электрических и магнитных взаимодействий впервые было выполнено Г. Кавендишем (1731-1810) и Ш. Кулоном (1736-1806).После серии экспериментов А. Вольта (1745-1827) была создана батарея ("столб"), позволившая получать постоянный ток за счет электрохимических процессов. С помощью такой батареи удалось разложить воду на водород и кислород, что стало началом нового направления – электрохимии.

Химия. От опытов с воздухом и пустотой химия в XVIII в. перешла к исследованию новых газов, приобретая рациональный и количественный характер. Миражем химии была своя невесомая "субстанция огня" – "флогистон", известная со времен Парацельса, но названная так Г. Шталем (1660-1734). Довольно случайное открытие Д. Пристли кислорода и его научное исследование А. Лавуазье позволило создать кислородную теорию горения, сделавшую ненужной концепцию "флогистона". А. Лавуазье является основоположником научной химии, химии как системы. Он выделил и описал три категории химических соединений: кислоты, основания, соли. Дал им современные названия; привел химию к количественному выражению, в которое входили только элементы; экспериментально доказал идентичность процессов окисления в живом и неживом мире.

Биология. Главным содержанием биологии стала практическая необходимость классификации, поскольку количество новых видов было столь велико, что возник хаос в их описании. Классификация не только выражала дух коллекционирования, характерный для XVIII в. (например, коллекции сэра Хенсона Слоона (1660-1753) стали ядром Британского музея), но и была попыткой осмыслить взаимосвязь различных живых форм в их развитии. Важнейшими представителями программы были: Карл Линней (1707-1778) – автор первой единой биологической классификации; Жорж Бюффон (1707-1788) – автор "Системы природы"; Жан Батист Ламарк (1744-1829) – автор первой целостной концепции эволюции (ламаркизм). Термин "биология" был введен в научный лексикон Ж.Б. Ламарком.

Наблюдательная и математическая астрономия. Выдающимися достижениями в области наблюдательной и математической астрономии стали: открытие У. Гершелем (1738-1822) двойных звезд и их орбитального движения (1803) и решение Ж. Лагранжем (1736-1813) задачи трех тел.

 

Теоретическая физика. Физика, прежде всего теоретическая, в XIX в. развивалась в тесной взаимосвязи с механикой и физико-феноменологическим направлением математической физики, не сводимой в то время к механике.

В первой трети XIX в. был создан фундамент классической физики, в основании которого лежали: дифференциальные уравнения с частными производными, математическая электростатика и магнитостатика – уравнения П. Лапласа (1749-1827) и С. Пуассона (1781-1840); теория Ж. Фурье (1768-1830) – уравнение теплопроводности; волновая оптика О. Френеля (1775-1827) и электродинамика А. Ампера (1775-1836). Это был золотой период развития французской теоретической мысли.

Наибольшего расцвета классическая физика достигла в 1850 – 1860 гг. После утверждения закона сохранения энергии, благодаря трудам Р. Клаузиуса, В. Томсона (1824-1907), Дж.Максвелла (1831-1879) и других ученых, возникли термодинамика, кинетическая теория газов и теория электромагнитного поля. При этом появились такие фундаментальные понятия, как энергия, электромагнитное поле, энтропия. Во многом это было обязано математическому оформлению физических принципов термодинамики и электродинамики.

Последнее 30-летие XIX в. – это подступы к квантово-релятивистской революции. Так, развитие кинетической теории материи приводит к статистической механике и вторжению в физику вероятностной математики. Взлет геометрии в XIX в. (проективная геометрия, неевклидовы геометрии, рименова геометрия, теоретико-групповой подход к геометрии и т.д.) и обсуждение проблемы геометрической структуры физического пространства, использование геометрических и теоретико-групповых методов в кристаллографии и механике – областях, казалось бы, далеких от физической науки, а также вызванное к жизни максвелловской теорией поля исчисление векторов и кватернионов, – все это открыло новые математические пути развития физики, которые вышли на передний план в релятивистской физике XX в.

Основные вехи классической термодинамики. Открытию закона сохранения энергии (принципа эквивалентности теплоты и работы) способствовало несколько направлений научной мысли: экспериментально-эмпирическая (Дж. Джоуль), натурфилософская (Ю. Майер) и теоретико-физическая, или математическая (Г. Гельмгольц).

Математизация теории теплоты С.Карно, которая была проведена Б. Клайпероном (1799-1864), а затем ее объединение с концепцией сохранения энергии Р. Клаузиусом и В. Томсоном в 50-е годы XIX в., завершило создание классической термодинамики – системной теории, в которой физические величины (энергия, температура, давление, энтропия и т.д.) ставятся в соответствии не только с пространством, но и с пространственно протяженными системами.

Разработка основ кинетической теории газов и статической механики. Это направление первоначально шло параллельно с первым, но с выходом на использование теории вероятностей оно становится самостоятельным направлением, давшим вероятностную трактовку второго начала термодинамики и обоснование кинетического уравнения (Л.Больцман, 1844-1906).

Основные вехи электродинамики. В 1820 г. А. Ампер открыл эффект взаимодействия проводников с током и, связав его с опытами Г.Х. Эрстеда (1777-1851), положил начало электродинамике как единой науке об электрических и магнитных явлениях. Уже в самом начале работы Ампер сделал вывод о ненужности магнитных флюидов и ввел фундаментальное понятие об электрическом токе. С 1831 г., даты открытия явления электромагнитной индукции М. Фарадеем (1791-1867), была проведена серия экспериментов по выявлению связи электрических, магнитных и световых явлений. Вершиной электродинамики, математизацией полевой концепции М.Фарадея являются работы Максвелла и его знаменитый "Трактат об электричестве и магнетизме" (1873). В конце 80-х годов XIX в. Г. Герцем было установлено существование электромагнитных волн, которые предсказывала максвелловская теория электромагнитного поля.

Химия в XIX в. характеризуется несколькими крупнейшими прорывами, проходившими на фоне развития атомистических представлений как отображения всеобщей антиномии дискретного и непрерывного. До открытия электрона была химическая атомистика, после – молекулярно-кинетическая (физическая).

Атомистика XIX в. началась с Дж. Дальтона (1766-1844), когда "механический" атом стал химическим – атомом определенного химического элемента с определенным "атомным весом" (термин Дальтона). На почве атомно-молекулярного учения выросло учение о валентности и химической связи. В 1812-1813 гг. Я. Берцелиус (1779-1849) предложил новую функциональную модель атома в виде электрического диполя, что позволило объяснить различные классические свойства одного и того же элемента, специфичность и селективность химического сродства различных атомов. Учение о химических элементах, объединенное с атомно-молекулярной теорией, создало широчайшие возможности для изучения свойств химических соединений.

Открытие новых химических элементов и изучение их соединений подготовили почву для возникновения периодического закона. Создание в 1861 г. теории химического строения (органической химии) А.М.Бутлеровым (1828-1886) и открытие в 1869 г. периодического закона химических элементов Д.И. Менделеевым (1834-1907) венчали становление классической химии как науки.

Биология в середине XIX века. В середине XIX в. биология была в центре внимания научной общественности. Идеи эволюции Чарльза Дарвина (1809-1882) приобрели широкое мировоззренческое значение. Во-первых, это было прямым и, возможно, самым сильным выпадом против догмата сотворения человека, во-вторых, идея выживания сильнейшего весьма импонировала настроению "бури и натиска" в то время. Однако с самого начала дарвинизм содержал "моменты неустойчивости", впоследствии приведшие к его дискредитации и сложной судьбе теории эволюции в целом. Наиболее существенным из таких моментов была известная декларативность дарвинизма, когда выводы предшествовали анализу.

Для XIX в. характерно становление биологии как научной дисциплины в ее традиционной, "классической" форме – "натуралистической биологии". Ее методами стали тщательные наблюдения и описания явлений природы, главной задачей – их классифицирование, а реальной перспективой – установление закономерностей их осуществления, смысла и значения для Природы в целом, что может быть охарактеризовано как системный подход в исследованиях.

Огромное место в биологии занимают различные способы объединения организмов в отдельные группы, или таксоны (греч. taxis – расположение, строй); а они, в свою очередь, – в системы (эволюционные, филогенетические, генеалогические). Одно из первых "филогенетических деревьев" сконструировал Э. Геккель (1834-1919).

Во второй половине XIX в. зарождается такое направление, как "экспериментальная биология". Это было связано с работами К. Бернара (1813-1878), Л. Пастера (1822-1895), И.М. Сеченова (1829-1905) и др. Точные физико-химическими методы легли в основу исследования процессов жизнедеятельности, прибегая к расчленению биологической целостности организма с целью проникновения в тайны его функционирования.

Если первая половина XIX века – «эпоха пара, железа и угля», то вторая половина XIX в. – «эпоха электричества, стали и нефти». Эра механизации. Машины как средство труда и удобства в человеческой жизни.

 

<== предыдущая лекция | следующая лекция ==>
Социальная сторона научной революции XVII века | Экономические основы маркетинга нужды, потребности, спрос.
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 343; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.