КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
ЗДР першого порядку. Диференціальне рівняння називається звичайним (ЗДР), якщо невідома функція є функцією однієї змінної
ЗДР вищого порядку. 7.5. Контрольні запитання. Диференціальне рівняння називається звичайним (ЗДР), якщо невідома функція є функцією однієї змінної, і диференціальним рівнянням в частинних похідних, якщо невідома функція є функцією багатьох змінних. Таким чином, звичайним диференціальним рівнянням називають рівняння виду: , (1) де x – незалежна змінна; y = y(x) – невідома функція; ¾ відповідно похідні цієї функції порядку 1, 2,…, n. Розв’язком диференціального рівняння (1) на деякому інтервалі (a;b) називається диференційована на цьому інтервалі функція y = y(x), яка при підстановці в рівняння (1) перетворює його в тотожність по x на (a;b). Кожне диференціальне рівняння має безліч розв’язків. Щоб знайти частинний розв’язок рівняння необхідно, задати додаткові умови. Залежно від способу задання додаткових умов розрізняють два типи задач: задача Коші і крайова задача. Якщо додаткові умови задаються в одній точці, то така задача називається задачею Коші, а ці умови ¾ початковими умовами. Якщо додаткові умови задаються більш ніж в одній точці, то така задача називається крайовою задачею, а умови ¾ крайовими або граничними. Задача Коші полягає в тому, щоб знайти розв’язок y(x) звичайного диференціального рівняння першого порядку , (2) який задовольняє початкову умову . (3) З погляду геометрії розв’язати задачу Коші ¾ це означає виділити з множини інтегральних кривих (розв’язків) ту, яка проходить через задану точку . Для розв’язання задачі Коші широко використовують чисельні методи, які дають наближений розв’язок диференціального рівняння у вигляді таблиці значень. В основі цих методів лежить покроковий принцип визначення шуканої функції. Найпоширенішими є методи Ейлера та Рунге – Кутта. В курсі вищої математики доводять теореми про існування та єдиність розв’язку в залежності від тих чи інших умов. Розглянуті два типи задач можна розв’язати за допомогою MathCAD: o Задачі Коші – для яких визначені початкові умови для шуканих функцій, тобто задані значення цих функцій в початковій точці інтервалу інтегрування рівняння; o Крайові задачі – для яких задані деякі відношення зразу на обох границях інтервалу. В більшості випадків диференціальне рівняння можна записати в стандартному вигляді y'(х)=f(х, y(х)). І тільки з такою формою запису рівняння вміє працювати обчислювальний процесор MathCAD. 7.2. Обчислювальний блок Given/Odesolve. Обчислювальний блок для рішення одного ЗДР, що реалізує чисельний метод Рунге-Кутта, складається із трьох частин: o Given – ключове слово; o ЗДР і початкові умови, записані за допомогою логічних операторів (початкова умова повинна бути записана у вигляді ); o Odesolve (x,x1) – вбудована функція для рішення ЗДР відносно змінної х на інтервалі (х0, х1). Приклад №1. Розглянемо розв’язання задачі математичної екології, яка описує динаміку популяції з внутрішньою конкуренцією. Спочатку виникає ріст чисельності популяції, близький до експоненціального, а потім вихід на стаціонарнийстан. Рівняння, що описує цей процес має вигляд . Знайдемо розв’язок MathCAD вимагає, щоб кінцева точка інтегрування ЗДР лежала правіше початкової, тобто х0<x1. Як можна зауважити, результатом використання блоку Given/Odesolve є функція у(х), визначена на проміжку (х0,х1). Потрібно скористатися звичайними засобами MathCAD, щоб побудувати її графік або отримати значення функції в будь-якій точці вказаного інтервалу, наприклад у(2)=0.451. Користувач має можливість вибрати між двома модифікаціями чисельного метода Рунге-Кутта. Для зміни методу необхідно клацнути правою кнопкою миші на області функції Odesolve, визвати контекстне меню і вибрати в ньому один з двох пунктів Fixed (фіксований крок) або Adaptive (адаптивний). За замовчуванням приміняться перший з них.
7.3. Вбудовані функції rкfixed, Rkadapt, Bulstoer. Чисельні рішення задачі Коші для диференціальних рівнянь і систем рівнянь можуть бути реалізовані функціями: o rkfixed(y,x1,x2,n,F) - повертає матрицю рішень системи диференціальних рівнянь методом Рунге-Кутта 4-го порядку при фіксованому кроці по x. o rkadapt(y,x1,x2,n,F) - шукає рішення зі змінним кроком (там, де рішення змінюється повільніше, крок збільшується, а в області швидкої зміни рішення крок функції зменшується). Функція працює швидше, ніж rkfixed. o Bulstoer(y,x1,x2,n,F) - дає більш точне рішення (методом Bulirsch-Stoer). Де: o y - вектор початкових умов; o x1,x2 - границі інтервалу для пошуку рішення; o n - кількість точок на інтервалі; o F(x,y) - вектор-функція перших похідних. Приклад №2. Розглянемо рішення задачі математичної екології за допомогою вбудованої функції rкfixed.
Дата добавления: 2013-12-13; Просмотров: 1209; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |