Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Просеивание


Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

Пирамидальная сортировка

 

Попытаемся теперь усовершенствовать другой рассмотренный выше простой алгоритм: сортировку простым выбором ПрВыб.

 

Р. Флойд предложил перестроить линейный массив в пирамиду - своеобразное бинарное дерево, - а затем искать минимум только среди тех элементов, которые находятся непосредственно "под" текущим вставляемым.

 

 

Для начала необходимо перестроить исходный массив так, чтобы он превратился в пирамиду, где каждый элемент "опирается" на два меньших. Этот процесс назвали просеиванием, потому что он очень напоминает процесс разделения некоторой смеси (камней, монет, т.п.) на фракции в соответствии с размерам частиц: на нескольких грохотах3) последовательно задерживаются сначала крупные, а затем все более мелкие частицы.

 

Итак, будем рассматривать наш линейный массив как пирамидальную структуру:

a[1]

a[2] a[3]

a[4] a[5] a[6] a[7]

a[8] a[9] a[10] a[11] a[12]

 

 

Видно, что любой элемент a[i] (1<=i<=N div 2) "опирается" на элементы a[2*i] и a[2*i+1]. И в каждой такой тройке максимальный элемент должен находится "сверху". Конечно, исходный массив может и не удовлетворять этому свойству, поэтому его потребуется немного перестроить.

 

Начнем процесс просеивания "снизу". Половина элементов (с ((N div 2)+1)-го по N-й) являются основанием пирамиды, их просеивать не нужно. А для всех остальных элементов (двигаясь от конца массива к началу) мы будем проверять тройки a[i], a[2*i] и a[2*i+1] и перемещать максимум "наверх" - в элемент a[i].

 

При этом, если в результате одного перемещения нарушается пирамидальность в другой (ниже лежащей) тройке элементов, там снова необходимо "навести порядок" - и так до самого "низа" пирамиды:

 

for i:= (N div 2)downto 1 do

begin j:= i;

while j<=(N div 2) do

begin k:= 2*j;

if (k+1<=N) and (a[k]<a[k+1])

then k:= k+1;

if a[k]>a[j]

then begin x:= a[j];

a[j]:= a[k];

a[k]:= x;

j:= k

end

else break

end

end;

 

 

<== предыдущая лекция | следующая лекция ==>
Эффективность алгоритма УлШелл | Алгоритм УлПир

Дата добавления: 2013-12-13; Просмотров: 169; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.