КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнения Лагранжа и Клеро
Уравнения вида y = f(y’) и x = f(y’).
Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции. Для уравнения первого типа получаем: Делая замену, получаем: В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными. Общий интеграл в параметрической форме представляется системой уравнений: Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме.
Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:
Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y’. Для нахождения общего решение применяется подстановка p = y’. Дифференцируя это уравнение,c учетом того, что , получаем: Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:
Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида: Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа. С учетом замены , уравнение принимает вид:
Это уравнение имеет два возможных решения: или В первом случае:
Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий. Во втором случае решение в параметрической форме выражается системой уравнений:
Исключая параметр р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением. Это решение будет являться особым интегралом. Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.
Пример. Решить уравнение с заданными начальными условиями. Это линейное неоднородное дифференциальное уравнение первого порядка. Решим соответствующее ему однородное уравнение. Для неоднородного уравнения общее решение имеет вид: Дифференцируя, получаем: Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение: Итого, общее решение:
C учетом начального условия определяем постоянный коэффициент C. Окончательно получаем: Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно Ниже показан график интегральной кривой уравнения.
Пример. Найти общий интеграл уравнения .
Это уравнение с разделяющимися переменными. Общий интеграл имеет вид: Построим интегральные кривые дифференциального уравнения при различных значениях С. С = - 0,5 С = -0,02 С = -1 С = -2
Дата добавления: 2013-12-13; Просмотров: 719; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |