КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами
Уравнения с правой частью специального вида. Представляется возможным представить вид частного решения в зависимости от вида правой части неоднородного уравнения. Различают следующие случаи:
I. Правая часть линейного неоднородного дифференциального уравнения имеет вид: где - многочлен степени m. Тогда частное решение ищется в виде: Здесь Q(x) - многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.
Пример. Решить уравнение . Решим соответствующее однородное уравнение: Теперь найдем частное решение исходного неоднородного уравнения. Сопоставим правую часть уравнения с видом правой части, рассмотренным выше. Частное решение ищем в виде: , где Т.е. Теперь определим неизвестные коэффициенты А и В. Подставим частное решение в общем виде в исходное неоднородное дифференциальное уравнение. Итого, частное решение:
Тогда общее решение линейного неоднородного дифференциального уравнения: II. Правая часть линейного неоднородного дифференциального уравнения имеет вид:
Здесь Р1(х) и Р2(х) – многочлены степени m 1 и m2 соответственно. Тогда частное решение неоднородного уравнения будет иметь вид:
где число r показывает сколько раз число является корнем характеристического уравнения для соответствующего однородного уравнения, а Q1(x) и Q2(x) – многочлены степени не выше m, где m - большая из степеней m1 и m2.
Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию. Т.е. если уравнение имеет вид: , то частное решение этого уравнения будет где у1 и у2 – частные решения вспомогательных уравнений и
Для иллюстрации решим рассмотренный выше пример другим способом. Пример. Решить уравнение
Правую часть дифференциального уравнения представим в виде суммы двух функций f1(x) + f2(x) = x + (- sin x). Составим и решим характеристическое уравнение:
1. Для функции f1 (x) решение ищем в виде . Получаем: Т.е.
Итого: 2. Для функции f2 (x) решение ищем в виде: . Анализируя функцию f2 (x), получаем:
Таким образом,
Итого:
Т.е. искомое частное решение имеет вид:
Общее решение неоднородного дифференциального уравнения:
Рассмотрим примеры применения описанных методов.
Пример. Решить уравнение Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения:
Общее решение однородного уравнения: Теперь найдем частное решение неоднородного уравнения в виде: Воспользуемся методом неопределенных коэффициентов. Подставляя в исходное уравнение, получаем: Частное решение имеет вид: Общее решение линейного неоднородного уравнения: Пример. Решить уравнение
Характеристическое уравнение: Общее решение однородного уравнения: Частное решение неоднородного уравнения: . Находим производные и подставляем их в исходное неоднородное уравнение: Получаем общее решение неоднородного дифференциального уравнения:
Дата добавления: 2013-12-13; Просмотров: 444; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |